
TSU111

Nanopower (900 nA), high accuracy (150 µV) 5 V CMOS operational amplifier

Datasheet - production data

Features

- Submicro ampere current consumption: Icc = 900 nA typ at 25 °C
- Low offset voltage: 150 μV max at 25 °C, 235 μV max over full temperature range (-40 to 85 °C)
- Low noise over 0.1 to 10 Hz bandwidth:
 3.6 µVpp
- Low supply voltage: 1.5 V 5.5 V
- Rail-to-rail input and output
- Gain bandwidth product: 11.5 kHz typ
- Low input bias current: 10 pA max at 25 °C
- High tolerance to ESD: 4 kV HBM

Benefits

- More than 25 years of typical equivalent lifetime supplied by a 220 mA.h CR2032 coin type Lithium battery
- High accuracy without calibration
- Tolerance to power supply transient drops

Related products

- See TSU101, TSU102 and TSU104 for further power savings
- See TSZ121, TSZ122 and TSZ124 for increased accuracy

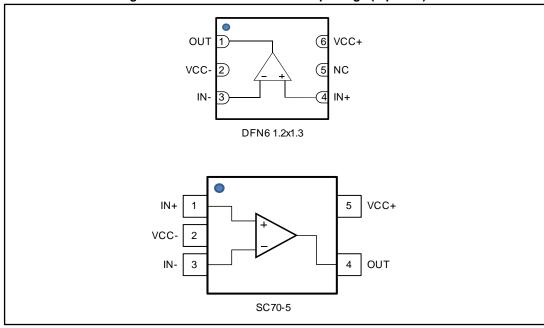
Applications

- Gas sensors: CO, O₂, and H₂S
- Alarms: PIR sensors
- Signal conditioning for energy harvesting and wearable products
- Ultra long-life battery-powered applications
- Battery current sensing
- Active RFID tags

Description

The TSU111 operational amplifier (op amp) offers an ultra low-power consumption of 900 nA typical and 1.2 μ A maximum when supplied by 3.3 V. Combined with a supply voltage range of 1.5 V to 5.5 V, these features allow the TSU111 to be efficiently supplied by a coin type Lithium battery or a regulated voltage in low-power applications.

The high accuracy of 150 μ V max and 11.5 kHz gain bandwidth make the TSU111 ideal for sensor signal conditioning, battery supplied, and portable applications.


Contents TSU111

Contents

Absolut		
	e maximum ratings and operating	conditions4
Electric	al characteristics	5
Electric	al characteristic curves	11
Applica	tion information	16
5.1		
		nanopower17
	5.1.2 PCB layout considerations	17
5.2	Rail-to-rail input	18
5.3	Input offset voltage drift over temperatu	re18
5.4	Long term input offset voltage drift	18
5.5	Using the TSU111 with sensors	20
	5.5.1 Electrochemical gas sensors	20
5.6	Fast desaturation	21
5.7	Using the TSU111 in comparator mode	21
5.8	ESD structure of the TSU111	22
5.9	EMI robustness of nanopower devices .	22
Package	e information	23
6.1	SC70-5 (or SOT323-5) package informa	ation24
6.2	DFN6 1.2x1.3 package information	25
Orderin	g information	28
Revisio	n history	29
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 Package 6.1 6.2 Ordering	Electrical characteristic curves Application information 5.1 Nanopower applications 5.1.1 Schematic optimization aiming for 5.1.2 PCB layout considerations 5.2 Rail-to-rail input 5.3 Input offset voltage drift over temperatu 5.4 Long term input offset voltage drift 5.5 Using the TSU111 with sensors 5.5.1 Electrochemical gas sensors 5.6 Fast desaturation 5.7 Using the TSU111 in comparator mode 5.8 ESD structure of the TSU111 5.9 EMI robustness of nanopower devices Package information 6.1 SC70-5 (or SOT323-5) package information

1 Package pin connections

Figure 1: Pin connections for each package (top view)

2 Absolute maximum ratings and operating conditions

Table 1: Absolute maximum ratings (AMR)

Symbol	Parameter		Value	Unit
Vcc	Supply voltage (1)		6	
Vid	Differential input voltage (2)		±Vcc	V
V_{in}	Input voltage (3)		(V_{CC-}) - 0.2 to (V_{CC+}) + 0.2	
lin	Input current (4)	10	mA	
T _{stg}	Storage temperature	-65 to 150	°C	
Tj	Maximum junction temperature		150	
D., .	Thermal resistance	DFN6 1.2x1.3	232	°C/W
R _{thja}	junction-to-ambient (5) (6)	SC70-5	205	C/VV
ESD	HBM: human body model (7)		4000	V
E3D	CDM: charged device model (8)	1500	V	
	Latch-up immunity (9)		200	mA

Notes:

Table 2: Operating conditions

Symbol	Parameter	Value	Unit
Vcc	Supply voltage	1.5 to 5.5	V
Vicm	Common-mode input voltage range	(Vcc-) - 0.1 to (Vcc+) + 0.1	V
T _{oper}	Operating free-air temperature range	-40 to 85	°C

⁽¹⁾All voltage values, except the differential voltage are with respect to the network ground terminal.

 $^{^{(2)}}$ The differential voltage is the non-inverting input terminal with respect to the inverting input terminal.

 $^{^{(3)}(\}mbox{V}_{\mbox{\footnotesize{CC+}}})$ - $\mbox{V}_{\mbox{\footnotesize{in}}}$ must not exceed 6 V, $\mbox{V}_{\mbox{\footnotesize{in}}}$ - (VCC-) must not exceed 6 V.

⁽⁴⁾The input current must be limited by a resistor in-series with the inputs.

 $^{^{(5)}}R_{th}$ are typical values.

⁽⁶⁾Short-circuits can cause excessive heating and destructive dissipation.

⁽⁷⁾Related to ESDA/JEDEC JS-001 Apr. 2010

⁽⁸⁾Related to JEDEC JESD22-C101-E Dec. 2009

⁽⁹⁾Related to JEDEC JESD78C Sep. 2010

3 Electrical characteristics

Table 3: Electrical characteristics at (VCC+) = 1.8 V with (VCC-) = 0 V, Vicm = VCC/2, Tamb = 25 °C, and RL = 1 $M\Omega$ connected to VCC/2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
		DC performance	-				
.,		T = 25 °C			150	.,	
V_{io}	Input offset voltage	-40 °C < T< 85 °C			235	μV	
ΔV _{io} /ΔΤ	Input offset voltage drift	-40 °C < T< 85 °C			1.4	μV/°C	
ΔVio	Long-term input offset voltage drift	T = 25 °C ⁽¹⁾		TBD		μV/√month	
	land offer a commant (2)	T = 25 °C		1	10		
lio	Input offset current (2)	-40 °C < T< 85 °C			50	π Λ	
L.	Input bigg ourrent (2)	T = 25 °C		1	10	рA	
l _{ib}	Input bias current (2)	-40 °C < T< 85 °C			50		
	Common mode rejection	T = 25 °C	76	107			
CMR	ratio, 20 log ($\Delta V_{icm}/\Delta V_{io}$), $V_{icm} = 0$ to 1.8 V	-40 °C < T< 85 °C	71			dB	
^	Large signal voltage gain,	R _L = 100 kΩ, T = 25 °C	95	120		4.2	
A_{vd}	$V_{out} = 0.2 \text{ V to } (V_{CC+}) - 0.2 \text{ V}$	R _L = 100 kΩ, -40 °C < T< 85 °C	90				
V	High-level output voltage,	$R_L = 10 \text{ k}\Omega, T = 25 ^{\circ}\text{C}$		10	25		
Vон	(drop from Vcc+)	R _L = 10 kΩ, -40 °C < T< 85 °C			40	mV	
	Low-level output voltage	R _L = 10 kΩ, T = 25°C		8	25		
Vol		R _L = 10 kΩ, -40 °C < T< 85 °C			40		
	Output sink current,	T = 25 °C	2.8	5		mA	
	$V_{out} = V_{CC}$, $V_{ID} = -200 \text{ mV}$	-40 °C < T< 85 °C	1.5				
l _{out}	Output source current,	T = 25 °C	2	4		MA	
	$V_{out} = 0 \text{ V}, V_{ID} = 200 \text{ mV}$	-40 °C < T< 85 °C	1.5				
laa	Supply current (per channel),	T = 25 °C		900	1200	nΛ	
Icc	no load, V _{out} = V _{CC} /2	-40 °C < T< 85 °C			1480	nA	
		AC performance					
GBP	Gain bandwidth product			10		l.U⇒	
Fu	Unity gain frequency	B. 4 MO C. 60 5E		8		kHz	
Фт	Phase margin	$R_L = 1 M\Omega$, $C_L = 60 pF$		60		degrees	
Gm	Gain margin			10		dB	
SR	Slew rate (10 % to 90 %)	$R_L = 1 \text{ M}\Omega, C_L = 60 \text{ pF},$ $V_{out} = 0.3 \text{ V to (Vcc+)} - 0.3 \text{ V}$		2.5		V/ms	
en	Equivalent input noise voltage	f = 100 Hz		220		nV/√Hz	
∫en	Low-frequency, peak-to-peak input noise	Bandwidth: f = 0.1 to 10 Hz		3.8		μV_{pp}	
t _{rec}	Overload recovery time	100 mV from rail in comparator, R_L = 100 k Ω , V_{ID} = ±1 V, -40 °C < T< 85 °C		325		μs	

Notes:

 $^{(1)}$ Typical value is based on the Vio drift observed after 1000h at 85 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration

(2)Guaranteed by design

TSU111 Electrical characteristics

Table 4: Electrical characteristics at (VCC+) = 3.3 V with (VCC-) = 0 V, Vicm = VCC/2, Tamb = 25 °C, and RL = 1 M Ω connected to VCC/2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
		DC performance					
.,		T = 25 °C			150	.,	
V_{io}	Input offset voltage	-40 °C < T< 85 °C			235	μV	
ΔV _{io} /ΔΤ	Input offset voltage drift	-40 °C < T< 85 °C			1.4	μV/°C	
ΔV_{io}	Long-term input offset voltage drift	T = 25 °C ⁽¹⁾		TBD		μV/√month	
1.	Input offset current (2)	T = 25 °C		1	10		
lio	input onset current	-40 °C < T< 85 °C			50	π Λ	
	Input bigg gurrant (2)	T = 25 °C		1	10	рA	
lib	Input bias current (2)	-40 °C < T< 85 °C			50		
	Common mode rejection ratio,	T = 25 °C	81	110			
CMR	$ \begin{array}{c} 20 \mbox{ log } (\Delta V_{icm}/\Delta V_{io}), \\ V_{icm} = 0 \mbox{ to } 3.3 \mbox{ V} \end{array} $	-40 °C < T< 85 °C	76			dB	
Λ.	Large signal voltage gain,	R _L = 100 kΩ, T = 25 °C	105	130			
A_{Vd}	$V_{out} = 0.2 \text{ V to (V_{CC+})} - 0.2 \text{ V}$	R _L = 100 kΩ, -40 °C < T< 85 °C	105				
V/	High-level output voltage,	R _L = 10 kΩ, T = 25 °C		10	25		
Vон	(drop from Vcc+)	R _L = 10 kΩ, -40 °C < T< 85 °C			40 mV		
Vol	Low-level output voltage	$R_L = 10 \text{ k}\Omega, T = 25^{\circ}\text{C}$		7	25	IIIV	
VOL		R _L = 10 kΩ, -40 °C < T< 85 °C			40		
	Output sink current,	T = 25 °C	12	22		mA	
1.	$V_{out} = V_{CC}$, $V_{ID} = -200 \text{ mV}$	-40 °C < T< 85 °C	6				
lout	Output source current,	T = 25 °C	9	18		IIIA	
	$V_{out} = 0 \text{ V}, V_{ID} = 200 \text{ mV}$	-40 °C < T< 85 °C	5				
Icc	Supply current (per channel),	T = 25 °C		900	1200	nA	
ICC	no load, V _{out} = V _{CC} /2	-40 °C < T< 85 °C			1480	ПА	
		AC performance					
GBP	Gain bandwidth product			11		kHz	
Fu	Unity gain frequency	D. 4 MO C. 60 pF		10		KΠZ	
Φ_{m}	Phase margin	$R_L = 1 M\Omega$, $C_L = 60 pF$		60		degrees	
G_{m}	Gain margin			7		dB	
SR	Slew rate (10 % to 90 %)	$R_L = 1 \text{ M}\Omega, C_L = 60 \text{ pF},$ $V_{out} = 0.3 \text{ V to } (V_{CC+}) - 0.3 \text{ V}$		2.5		V/ms	
en	Equivalent input noise voltage	f = 100 Hz		220		nV/√Hz	
∫en	Low-frequency, peak-to-peak input noise	Bandwidth: f = 0.1 to 10 Hz		3.7		μV_{pp}	
t _{rec}	Overload recovery time	100 mV from rail in comparator, $R_L = 100 \text{ k}\Omega$, $V_{ID} = \pm 1 \text{ V}$, -40 °C < T < 85 °C		630		μs	

Notes:

⁽¹⁾Typical value is based on the Vio drift observed after 1000h at 85 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration

(2)Guaranteed by design

TSU111 Electrical characteristics

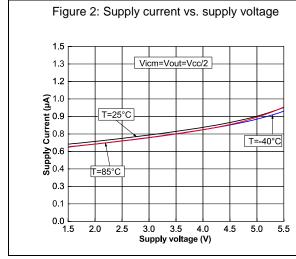
Table 5: Electrical characteristics at (VCC+) = 5 V with (VCC-) = 0 V, Vicm = VCC/2, Tamb = 25 °C, and RL = 1 M Ω connected to VCC/2 (unless otherwise specified)

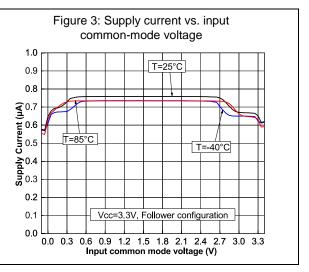
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		DC performance				
.,		T = 25 °C			150	.,
V_{io}	Input offset voltage	-40 °C < T< 85 °C			235	μV
ΔV _{io} /ΔΤ	Input offset voltage drift	-40 °C < T< 85 °C			1.4	μV/°C
ΔV_{io}	Long-term input offset voltage drift	T = 25 °C (1)		TBD		μV/√month
	Inner to the state of the state	T = 25 °C		1	10	
l _{io}	Input offset current (2)	-40 °C < T< 85 °C			50	Δ
	L	T = 25 °C		1	10	pA
l _{ib}	Input bias current (2)	-40 °C < T< 85 °C			50	
	Common mode rejection ratio,	T = 25 °C	90	121		
CMR	$ \begin{array}{c} 20 \ log \ (\Delta V_{icm}/\Delta V_{io}), \\ V_{icm} = 0 \ to \ 4.4 \ V \end{array} $	-40 °C < T< 85 °C	90			
Civiix	Common mode rejection ratio,	T = 25 °C	85	112		
	$ \begin{array}{c} 20 \; log \; (\Delta V_{icm}/\Delta V_{io}), \\ V_{icm} = 0 \; to \; 5 \; V \end{array} $	-40 °C < T< 85 °C	80			dB
SVR	Supply voltage rejection ratio,	T = 25 °C	92	116		
SVK	$V_{CC} = 1.5 \text{ to } 5.5 \text{ V}, V_{icm} = 0 \text{ V}$	-40 °C < T< 85 °C	84			
Λ.	Large signal voltage gain,	Itage gain, $R_L = 100 \text{ k}\Omega, T = 25 \text{ °C}$ 10		135		İ
A_{vd}	$V_{out} = 0.2 \text{ V to } (V_{CC+}) - 0.2 \text{ V}$	$R_L = 100 \text{ k}\Omega, -40 \text{ °C} < T < 85 \text{ °C}$	101			
Vон	High-level output voltage, (drop from V _{CC} +)	$R_L = 10 \text{ k}\Omega, T = 25 ^{\circ}\text{C}$		10	25	
VOH		$R_L = 10 \text{ k}\Omega, -40 \text{ °C} < T < 85 \text{ °C}$			40	mV
Vol	Low lovel output voltage	$R_L = 10 \text{ k}\Omega, T = 25^{\circ}\text{C}$		7	25	IIIV
VOL	Low-level output voltage	$R_L = 10 \text{ k}\Omega, -40 \text{ °C} < T < 85 \text{ °C}$			40	
	Output sink current,	T = 25 °C	30	45		
l _{out}	$V_{out} = V_{CC}$, $V_{ID} = -200 \text{ mV}$	-40 °C < T< 85 °C	15			mA
lout	Output source current,	T = 25 °C	25	41		IIIA
	$V_{out} = 0 \text{ V}, V_{ID} = 200 \text{ mV}$	-40 °C < T< 85 °C	18			
Icc	Supply current (per channel),	T = 25 °C		950	1350	nA
icc	no load, V _{out} = V _{CC} /2	-40 °C < T< 85 °C			1620	ПА
		AC performance				
GBP	Gain bandwidth product			11.5		kHz
Fu	Unity gain frequency	$R_L = 1 M\Omega, C_L = 60 pF$		10		KΠZ
Φ_{m}	Phase margin	R _L = 1 WΩ2, G _L = 60 pr		60		degrees
Gm	Gain margin			7		dB
SR	Slew rate (10 % to 90 %)	$R_L = 1 \text{ M}\Omega, C_L = 60 \text{ pF},$ $V_{out} = 0.3 \text{ V to } (V_{CC+}) - 0.3 \text{ V}$		2.7		V/ms
e n	Equivalent input noise voltage	f = 100 Hz		200		nV/√Hz
∫en	Low-frequency, peak-to-peak input noise	Bandwidth: f = 0.1 to 10 Hz		3.6		μV_{pp}

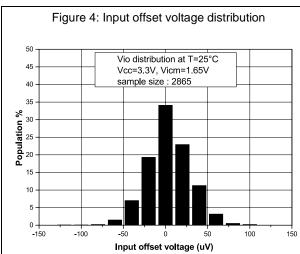
Electrical characteristics

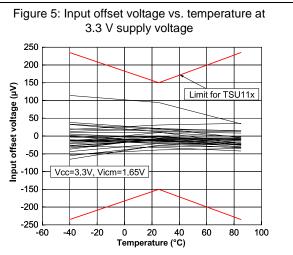
TSU111

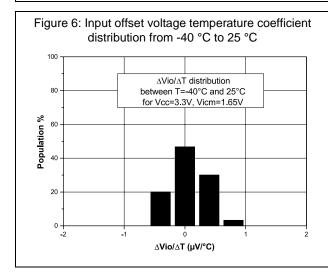
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{rec}	Overload recovery time	100 mV from rail in comparator, $R_L = 100 \text{ k}\Omega$, $V_{ID} = \pm 1 \text{ V}$, $-40 \text{ °C} < T < 85 \text{ °C}$		940		μs
		V _{in} = -10 dBm, f = 400 MHz		54		
EMIDD	Electromagnetic interference rejection ratio (3)	V _{in} = -10 dBm, f = 900 MHz		79		٩D
EMIRR		V _{in} = -10 dBm, f = 1.8 GHz		65		dB
		V _{in} = -10 dBm, f = 2.4 GHz		65		

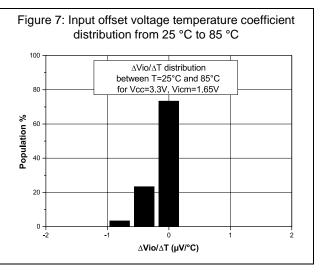

Notes:

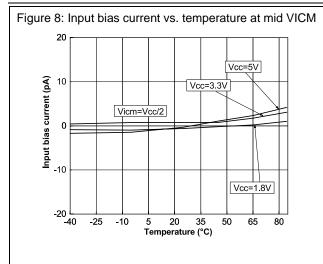

 $^{^{(1)}}$ Typical value is based on the Vio drift observed after 1000h at 85 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration


⁽²⁾Guaranteed by design

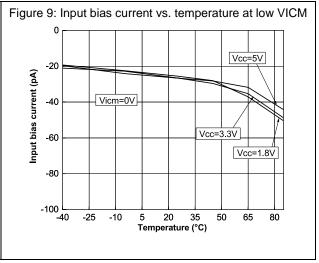
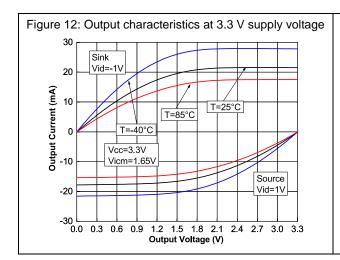
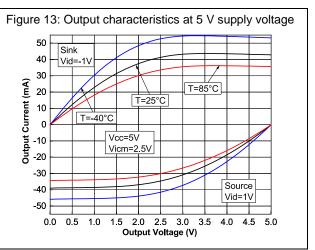
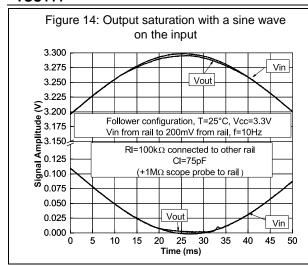

⁽³⁾Based on evaluations performed only in conductive mode

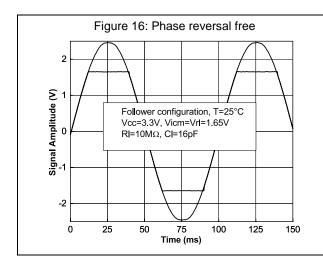

4 Electrical characteristic curves

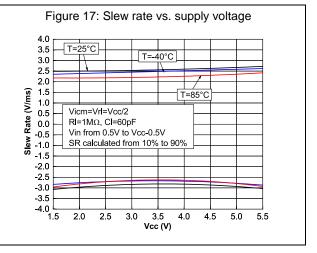


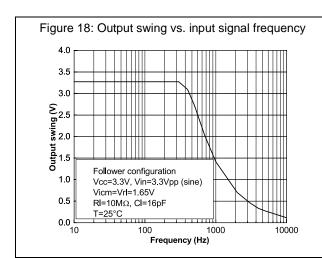


47/


Figure 10: Input bias current vs. temperature at high VICM 100 Vicm=Vcc Vcc=1.8V 80 Input bias current (pA) Vcc=5V 60 40 20 Vcc=3.3V 0 └─ -40 -25 -10 5 20 50 65 80 Temperature (°C)


Figure 11: Output characteristics at 1.8 V supply voltage 10 T=-40°C Sink Vid=-1\ Output Current (mA) T=25°C T=85°C 0 -2 Source Vid=1V -6 Vcc=1.8V Vicm=0.9V -8 -10 <u></u> 0.0 0.6 0.8 1.0 1. Output Voltage (V) 0.2 0.4 1.2 1.4 1.6



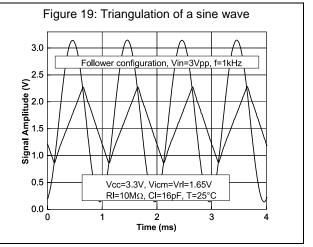
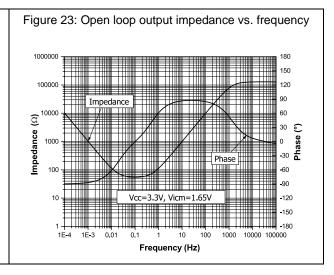
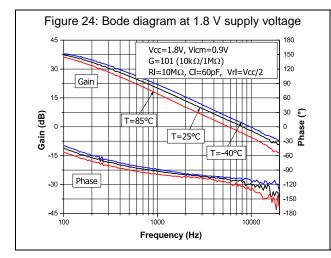


Figure 20: Large signal response at 3.3 V supply voltage

2 Follower configuration, T=25°C


Follower configuration, T=25°C


Vcc=3.3V
Vicm=Vrl=1.65V
Rl=10MΩ, Cl=16pF

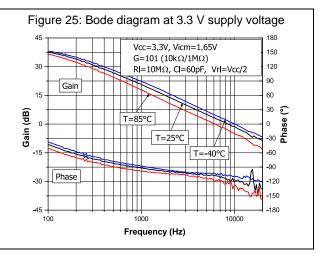
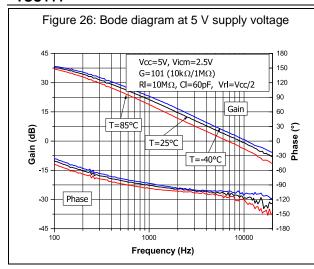
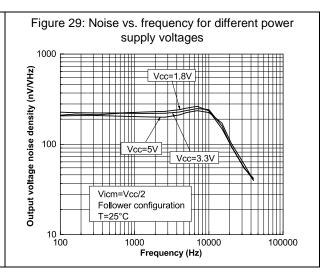
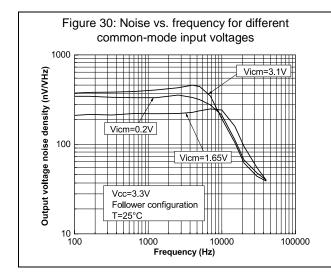

0 1 2 3 4 5 6 7 8 9 10
Time (ms)

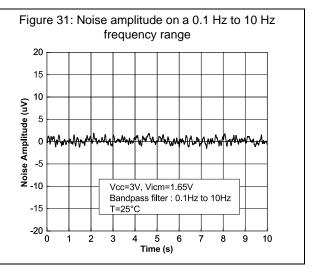
Figure 21: Small signal response at 3.3 V supply voltage Follower configuration, T=25°C 30 25 20 Signal Amplitude (mV) Vcc=3.3V Vicm=VrI=1.65V RI=1M Ω , CI=75pF -20 -25 -30 -35 └ 0.0 0.4 0.5 0.6 0.1 0.2 0.3 0.7 0.8 0.9 Time (ms)

Figure 22: Overshoot vs. capacitive load at 3.3 V supply voltage 40 36 32 28 ̃₂₄ Overshoot 12 Vcc=3.3V, Vicm=Vrl=1.65V 8 Follower configuration 50mVpp step 4 RI=1MΩ, T=25°C 0 0 L 100 150 200 250 300 350 400 450 500 Capacitive load (pF)






Figure 28: In-series resistor (Riso) vs. capacitive load


Recommended Riso to place between the output of the opamp and the capacitive load

Follower configuration Vcc=3.3V, Vicm=1.65V

Capacitive load (nF)

5 Application information

5.1 Nanopower applications

The TSU111 can operate from 1.5 V to 5.5 V. The parameters are fully specified at 1.8 V, 3.3 V, and 5 V supply voltages and are very stable in the full $V_{\rm CC}$ range. Additionally, the main specifications are guaranteed on the industrial temperature range from -40 to 85 °C. The estimated lifetime of the TSU111 exceeds 25 years if supplied by a CR2032 battery (see *Figure 32: "CR2032 battery"*).

Figure 32: CR2032 battery

5.1.1 Schematic optimization aiming for nanopower

To benefit from the full performance of the TSU111, the impedances must be maximized so that current consumption is not lost where it is not required.

For example, an aluminum electrolytic capacitance can have significantly high leakage. This leakage may be greater than the current consumption of the op amp. For this reason, ceramic type capacitors are preferred.

For the same reason, big resistor values should be used in the feedback loop. However, there are two main limitations to be considered when choosing a resistor.

- 1. Noise generated: a 100 k Ω resistor generates 40 nV/ \sqrt{Hz} , a bigger resistor value generates even more noise.
- 2. Leakage on the PCB: leakage can be generated by moisture. This can be improved by using a specific coating process on the PCB.

5.1.2 PCB layout considerations

For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.

Minimizing the leakage from sensitive high impedance nodes on the inputs of the TSU111 can be performed with a guarding technique. The technique consists of surrounding high impedance tracks by a low impedance track (the ring). The ring is at the same electrical potential as the high impedance node.

Therefore, even if some parasitic impedance exists between the tracks, no leakage current can flow through them as they are at the same potential (see *Figure 33: "Guarding on the PCB"*).

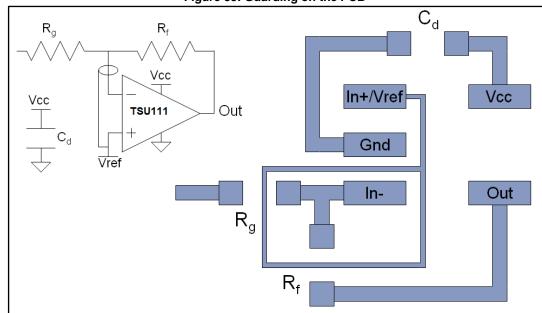


Figure 33: Guarding on the PCB

5.2 Rail-to-rail input

The TSU111 is built with two complementary PMOS and NMOS input differential pairs. Thus, the device has a rail-to-rail input, and the input common mode range is extended from (V_{CC-}) - 0.1 V to (V_{CC+}) + 0.1 V.

The TSU111 has been designed to prevent phase reversal behavior.

5.3 Input offset voltage drift over temperature

The maximum input voltage drift variation over temperature is defined as the offset variation related to the offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effect of temperature variations.

The maximum input voltage drift over temperature is computed using *Equation 1*.

Equation 1

$$\frac{\Delta V_{io}}{\Delta T} = \max \left| \frac{V_{io}(T) - V_{io}(25 \, ^{\circ}C)}{T - 25 \, ^{\circ}C} \right|$$

Where T = -40 °C and 85 °C.

The TSU111 datasheet maximum values are guaranteed by measurements on a representative sample size ensuring a C_{pk} (process capability index) greater than 1.3.

5.4 Long term input offset voltage drift

To evaluate product reliability, two types of stress acceleration are used:

- Voltage acceleration, by changing the applied voltage
- Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature.

The voltage acceleration has been defined based on JEDEC results, and is defined using *Equation 2*.

Equation 2

$$A_{FV} = e^{\beta \cdot (V_S - V_U)}$$

Where:

A_{FV} is the voltage acceleration factor

 β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1)

Vs is the stress voltage used for the accelerated test

V_U is the voltage used for the application

The temperature acceleration is driven by the Arrhenius model, and is defined in *Equation 3*.

Equation 3

$$A_{FT} = e^{\frac{E_a}{k} \cdot \left(\frac{1}{T_U} - \frac{1}{T_S}\right)}$$

Where:

AFT is the temperature acceleration factor

Ea is the activation energy of the technology based on the failure rate

k is the Boltzmann constant (8.6173 x 10⁻⁵ eV.K⁻¹)

T_U is the temperature of the die when V_U is used (°K)

Ts is the temperature of the die under temperature stress (°K)

The final acceleration factor, A_F , is the multiplication of the voltage acceleration factor and the temperature acceleration factor (*Equation 4*).

Equation 4

$$A_F = A_{FT} \times A_{FV}$$

 A_F is calculated using the temperature and voltage defined in the mission profile of the product. The A_F value can then be used in *Equation 5* to calculate the number of months of use equivalent to 1000 hours of reliable stress duration.

Equation 5

Months =
$$A_F \times 1000 \text{ h} \times 12 \text{ months} / (24 \text{ h} \times 365.25 \text{ days})$$

To evaluate the op amp reliability, a follower stress condition is used where V_{CC} is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules).

The V_{io} drift (in μV) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see *Equation 6*).

Equation 6

$$V_{CC} = maxV_{op} \text{ with } V_{icm} = V_{CC}/2$$

The long term drift parameter (ΔV_{io}), estimating the reliability performance of the product, is obtained using the ratio of the V_{io} (input offset voltage value) drift over the square root of the calculated number of months (*Equation 7*).

Equation 7

$$\Delta V_{io} = \frac{V_{io} drift}{\sqrt{(month \, s)}}$$

Where V_{io} drift is the measured drift value in the specified test conditions after 1000 h stress duration.

5.5 Using the TSU111 with sensors

The TSU111 has MOS inputs, thus input bias currents can be guaranteed down to 10 pA maximum at ambient temperature. This is an important parameter when the operational amplifier is used in combination with high impedance sensors.

The TSU111 is perfectly suited for trans-impedance configuration. This configuration allows a current to be converted into a voltage value with a gain set by the user. It is an ideal choice for portable electrochemical gas sensing or photo/UV sensing applications. The TSU111, using trans-impedance configuration, is able to provide a voltage value based on the physical parameter sensed by the sensor.

5.5.1 Electrochemical gas sensors

The output current of electrochemical gas sensors is generally in the range of tens of nA to hundreds of μ A. As the input bias current of the TSU111 is very low (see *Figure 8*, *Figure 9*, and *Figure 10*) compared to these current values, the TSU111 is well adapted for use with the electrochemical sensors of two or three electrodes. *Figure 35: "Potentiostat schematic using the TSU111"* shows a potentiostat (electronic hardware required to control a three electrode cell) schematic using the TSU111. In such a configuration, the devices minimize leakage in the reference electrode compared to the current being measured on the working electrode.

Another great advantage of TSU111 versus the competition is its low noise for low frequencies (3.6 μ Vpp over 0.1 to 10Hz), and low input offset voltage of 150 μ V max. These improved parameters for the same power consumption allow a better accuracy.



Figure 34: Trans-impedance amplifier schematic

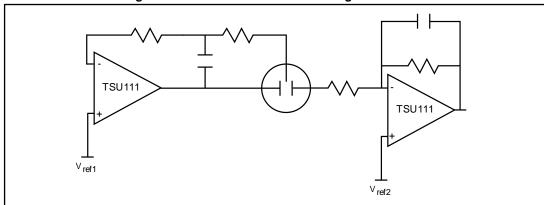
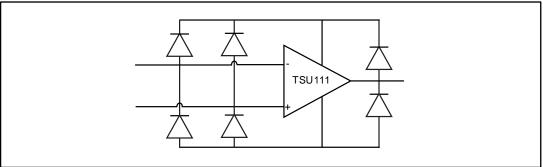


Figure 35: Potentiostat schematic using the TSU111

5.6 Fast desaturation

When the TSU111 goes into saturation mode, it takes a short period of time to recover, typically 630 μ s. When recovering after saturation, the TSU111 does not exhibit any voltage peaks that could generate issues (such as false alarms) in the application (see *Figure 14*).

We can observe that this circuit still exhibits good gain even close to the rails i.e. A_{vd} greater than 105 dB for $V_{cc} = 3.3$ V with V_{out} varying from 200 mV up to a supply voltage minus 200 mV. With a trans-impedance schematic, a voltage reference can be used to keep the signal away from the supply rails.


5.7 Using the TSU111 in comparator mode

The TSU111 can be used as a comparator. In this case, the output stage of the device always operates in saturation mode. In addition, *Figure 3* shows that the current consumption is not higher and even decreases smoothly close to the rails. The TSU111 is obviously an operational amplifier and is therefore optimized for use in linear mode. We recommend using the TS88 series of nanopower comparators if the primary function is to perform a signal comparison only.

5.8 ESD structure of the TSU111

The TSU111 is protected against electrostatic discharge (ESD) with dedicated diodes (see *Figure 36: "ESD structure"*). These diodes must be considered at application level especially when signals applied on the input pins go beyond the power supply rails (V_{CC+}) or (V_{CC-}).

Figure 36: ESD structure

Current through the diodes must be limited to a maximum of 10 mA as stated in *Table 1:* "Absolute maximum ratings (AMR)". A serial resistor on the inputs can be used to limit this current.

5.9 EMI robustness of nanopower devices

Nanopower devices exhibit higher impedance nodes and consequently they are more sensitive to EMI. To improve the natural robustness of the TSU111 device, we recommend to add three capacitors of around 22 pF each between the two inputs, and between each input and ground. These capacitors will lower the impedance of the input at high frequencies and therefore reduce the impact of the radiation.

TSU111 Package information

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

6.1 SC70-5 (or SOT323-5) package information

DIMENSIONS IN MM

SIDE VIEW

GALICI
COCHANAR LEADS

E/2

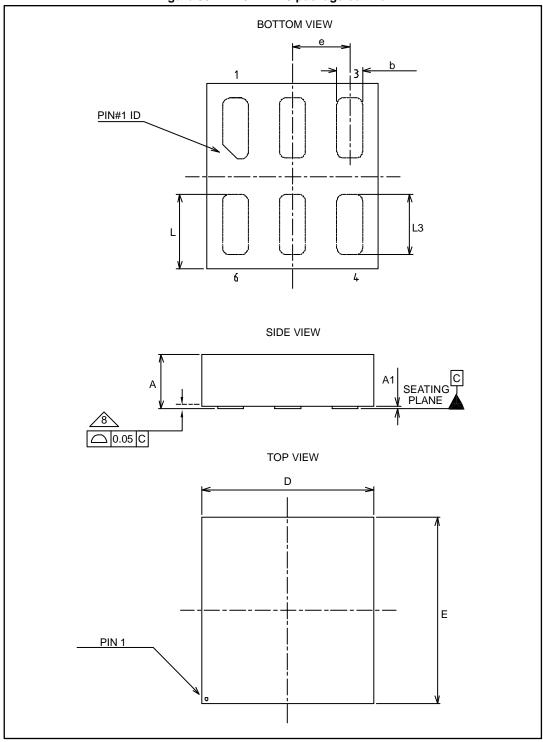
E/2

E1/2

TOP VIEW

TOP VIEW

Figure 37: SC70-5 (or SOT323-5) package outline


Table 6: SC70-5 (or SOT323-5) mechanical data

	Dimensions						
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	0.80		1.10	0.032		0.043	
A1			0.10			0.004	
A2	0.80	0.90	1.00	0.032	0.035	0.039	
b	0.15		0.30	0.006		0.012	
С	0.10		0.22	0.004		0.009	
D	1.80	2.00	2.20	0.071	0.079	0.087	
Е	1.80	2.10	2.40	0.071	0.083	0.094	
E1	1.15	1.25	1.35	0.045	0.049	0.053	
е		0.65			0.025		
e1		1.30			0.051		
L	0.26	0.36	0.46	0.010	0.014	0.018	
<	0°		8°	0°		8°	

TSU111 Package information

6.2 DFN6 1.2x1.3 package information

Figure 38: DFN6 1.2x1.3 package outline

Package information TSU111

Table 7: DFN6 1.2x1.3 mechanical data

	Dimensions					
Ref		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.31	0.38	0.40	0.012	0.015	0.016
A1	0.00	0.02	0.05	0.000	0.001	0.002
b	0.15	0.18	0.25	0.006	0.007	0.010
С		0.05			0.002	
D		1.20			0.047	
Е		1.30			0.051	
е		0.40			0.016	
L	0.475	0.525	0.575	0.019	0.021	0.023
L3	0.375	0.425	0.475	0.015	0.017	0.019

TSU111 Package information

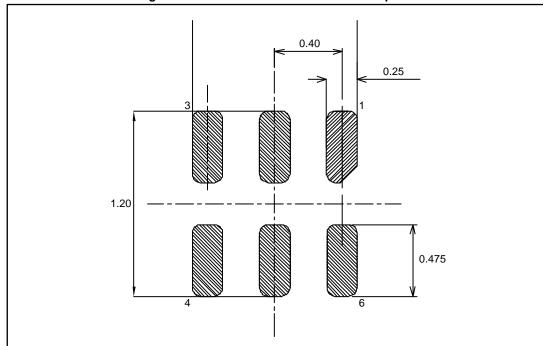


Figure 39: DFN6 1.2x1.3 recommended footprint

Table 8: DFN6 1.2x1.3 recommended footprint data

Dimensions						
Ref	Millimeters	Inches				
А	4.00	0.158				
В	4.00	0.130				
С	0.50	0.020				
D	0.30	0.012				
E	1.00	0.039				
F	0.70	0.028				
G	0.66	0.026				

Ordering information TSU111

7 Ordering information

Table 9: Order codes

Order code	Temperature range	Temperature range Package (1)	
TSU111IQ1T	40.90 to 05.90	DFN6 1.2x1.3	
TSU111ICT	-40 °C to 85 °C	SC70-5	K8

Notes:

⁽¹⁾All devices are delivered in tape and reel packing

TSU111 Revision history

8 Revision history

Table 10: Document revision history

Date	Revision	Changes
17-Oct-2016	1	Initial release
14-Nov-2016	2	Features: added "rail-to-rail input and output". Description: updated the maximum ultra low-power consumption of TSU111 op amp. Applications: updated Table 5: added EMIRR typ values Added Section 5.9: "EMI robustness of nanopower devices"

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved