

N-channel 950 V, 0.275 Ω, 17.5 A SuperMESH™ 5 Power MOSFET in TO-247 long leads package

Datasheet - preliminary data

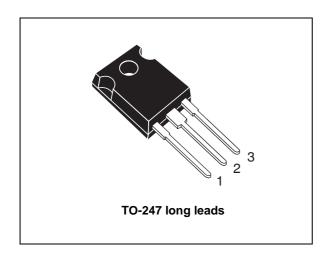
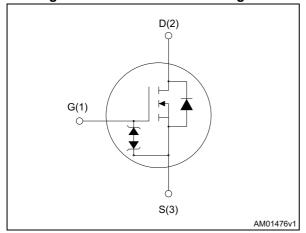



Figure 1. Internal schematic diagram

Features

Order codes	V _{DSS}	R _{DS(on)} max	I _D	P _W
STWA20N95K5	950 V	$0.330~\Omega$	17.5 A	250 W

- Worldwide best FOM (figure of merit)
- · Ultra low gate charge
- 100% avalanche tested
- Zener-protected

Applications

Switching applications

Description

This device is an N-channel Power MOSFET developed using SuperMESH™ 5 technology. This revolutionary, avalanche-rugged, high voltage Power MOSFET technology is based on an innovative proprietary vertical structure. The result is a drastic reduction in on-resistance and ultra low gate charge for applications which require superior power density and high efficiency.

Table 1. Device summary

Order codes	Marking	Package	Packaging
STWA20N95K5	20N95K5	TO-247 long leads	Tube

Contents STWA20N95K5

Contents

1	Electrical ratings	. 3
2	Electrical characteristics	. 4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	8
4	Package mechanical data	9
5	Revision history	11

STWA20N95K5 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate- source voltage	± 30	V
I _D	Drain current (continuous) at T _C = 25 °C	17.5	Α
I _D	Drain current (continuous) at T _C = 100 °C	11	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	70	Α
P _{TOT}	Total dissipation at T _C = 25 °C	250	W
I _{AR}	Max current during repetitive or single pulse avalanche (pulse width limited by T _{jmax})	6	А
E _{AS}	Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AS}$, $V_{DD} = 50$ V)	200	mJ
E _{SD}	Gate-source human body model (R= 1,5 k Ω , C = 100 pF)	2	kV
dv/dt (2)	Peak diode recovery voltage slope	6	V/ns
T _j T _{stg}	Operating junction temperature Storage temperature	-55 to 150	°C

^{1.} Pulse width limited by safe operating area.

Table 3. Thermal data

Symbol	Parameter	Value	Unit
Rthj-case	Thermal resistance junction-case max	0.5	°C/W
Rthj-amb	Thermal resistance junction-amb max	50	°C/W

^{2.} $I_{SD} \leq 17.5 \text{ A, di/dt} \leq 100 \text{ A/}\mu\text{s, V}_{Peak} \leq \text{V}_{(BR)DSS}$

Electrical characteristics STWA20N95K5

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 4. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	950			٧
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 950 V, V _{DS} = 950 V, Tc=125 °C			1 50	μA μA
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 100 \mu A$	3	4	5	٧
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 9 A		0.275	0.330	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	1500	-	pF
C _{oss}	Output capacitance	V _{DS} =100 V, f=1 MHz, V _{GS} =0	-	80	-	pF
C _{rss}	Reverse transfer capacitance	, 23 · · · , · · · , · · d3 · ·	-	5	-	pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	$V_{GS} = 0$, $V_{DS} = 0$ to 760 V	-	170	-	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	V _{GS} = 0, V _{DS} = 0 to 700 V	-	65	-	pF
R _G	Intrinsic gate resistance	f = 1MHz open drain	-	3.5	-	Ω
Qg	Total gate charge	V _{DD} = 760 V, I _D = 9 A	-	40	-	nC
Q _{gs}	Gate-source charge	V _{GS} =10 V	-	8	-	nC
Q _{gd}	Gate-drain charge	(see Figure 15)	-	25	-	nC

^{1.} Time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

4/12 DocID025573 Rev 1

^{2.} energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 475 \text{ V}, I_{D} = 9 \text{ A},$ R_{G} =4.7 Ω , V_{GS} =10 V	-	17	-	ns
t _r	Rise time		-	12	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 17)	-	70	-	ns
t _f	Fall time		-	20	-	ns

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		17.5	Α
I _{SDM}	Source-drain current (pulsed)		-		70	Α
V _{SD} ⁽¹⁾	Forward on voltage I _{SD} = 17.5 A, V _{GS} =0		-		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 17.5 A, V _{DD} = 60 V	-	530		ns
Q_{rr}	Reverse recovery charge	$di/dt = 100 \text{ A}/\mu\text{s},$	-	12		μC
I _{RRM}	Reverse recovery current	(see Figure 16)	-	44		Α
t _{rr}	Reverse recovery time	I _{SD} = 17.5 A,V _{DD} = 60 V	-	650		ns
Q _{rr}	Reverse recovery charge	di/dt=100 A/μs, Tj=150 °C	-	14		μC
I _{RRM}	Reverse recovery current	(see Figure 16)	-	77		Α

^{1.} Pulsed: pulse duration = 300μ s, duty cycle 1.5%

Table 8. Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)GSO}	Gate-source breakdown voltage	I_{GS} = ± 1 mA, I_D = 0	30	ı	-	V

The built-in-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

Electrical characteristics STWA20N95K5

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

AM11184v1
Tj=150°C
Tc=25°C
Single pulse
10μs
100μs
1ms
10ms

Figure 3. Thermal impedance

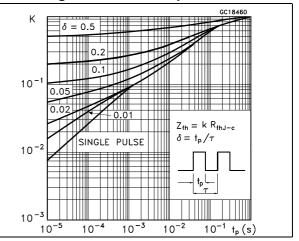
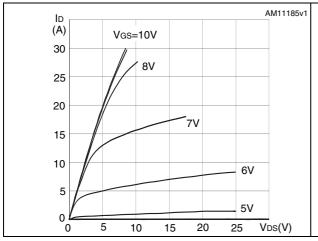


Figure 4. Output characteristics


10

100

V_{DS}(V)

0.1

Figure 5. Transfer characteristics

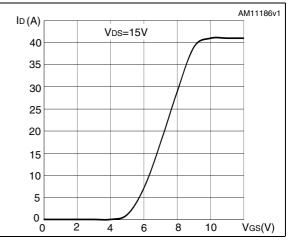
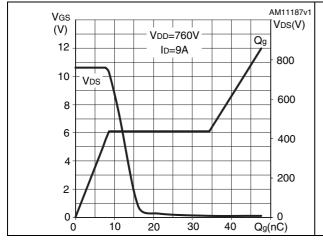
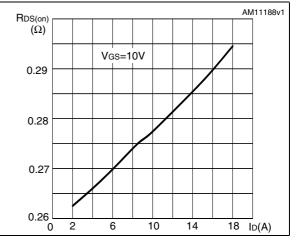
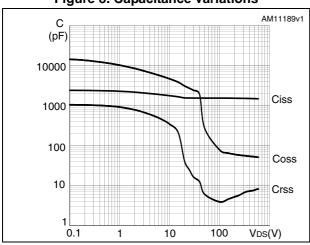




Figure 6. Gate charge vs gate-source voltage

Figure 7. Static drain-source on-resistance



577

6/12

Figure 8. Capacitance variations

Figure 9. Output capacitance stored energy

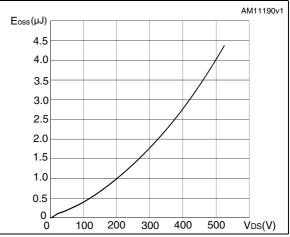
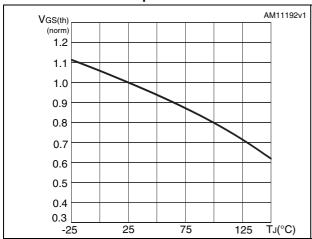



Figure 10. Normalized gate threshold voltage vs temperature

Figure 11. Normalized on-resistance vs temperature

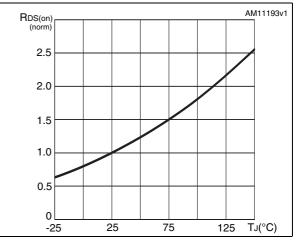
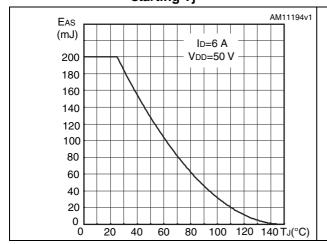
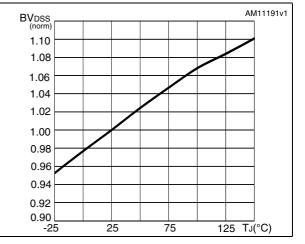




Figure 12. Maximum avalanche energy vs starting Tj

Figure 13. Normalized B_{VDSS} vs temperature

Test circuits STWA20N95K5

3 Test circuits

Figure 14. Switching times test circuit for resistive load

Figure 15. Gate charge test circuit

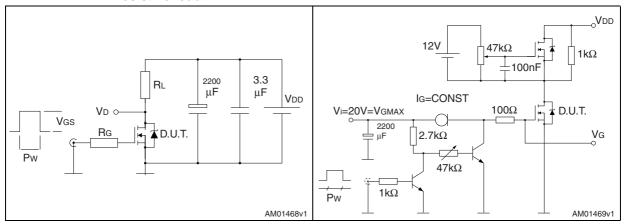


Figure 16. Test circuit for inductive load switching and diode recovery times

Figure 17. Unclamped inductive load test circuit

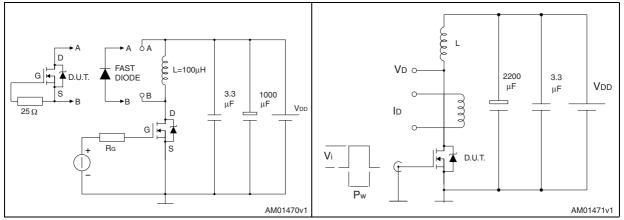
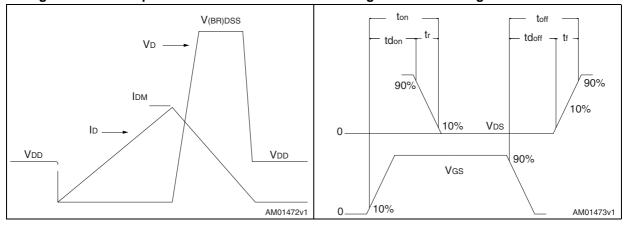



Figure 18. Unclamped inductive waveform

Figure 19. Switching time waveform

57

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 9. TO-247 long leads mechanical data

D:		mm			
Dim.	Min.	Тур.	Max.		
А	4.90		5.15		
D	1.85		2.10		
Е	0.55		0.67		
F	1.07		1.32		
F1	1.90		2.38		
F2	2.87		3.38		
G		10.90 BSC			
Н	15.77		16.02		
L	20.82		21.07		
L1	4.16		4.47		
L2	5.49		5.74		
L3	20.05		20.30		
L4	3.68		3.93		
L5	6.04		6.29		
М	2.25		2.55		
V		10°			
V1		3°			
V3		20°			
Dia.	3.55		3.66		

HEAT-SINK PLANE -D -D¦A F2 2 BACK VIEW 7395426_G

Figure 20. TO-247 long leads drawing

STWA20N95K5 Revision history

5 Revision history

Table 10. Document revision history

Date	Revision	Changes
21-Nov-2013	1	First release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

12/12 DocID025573 Rev 1

