

Order

Now

LP5030, LP5036 SLVSEH1 – SEPTEMBER 2018

LP503x 36-, 30-Channel 12-Bit PWM Ultralow Quiescent Current I²C RGB LED Drivers

1 Features

Texas

Operating Voltage Range:

INSTRUMENTS

- V_{CC} Range: 2.7 V to 5.5 V
- EN, SDA and SCL pins compatible with 1.8-V, 3.3-V, and 5-V Power Rails
- Output Maximum Voltage: 6 V
- 36 Constant-Current Sinks With High Precision
 - 25.5 mA Maximum per Channel When V_{CC} in Full Range
 - 35 mA Maximum per Channel When $V_{CC} \ge 3.3$ V
 - Device-to-Device Error: ±7%; Channel-to-Channel Error: ±7%
- Ultralow Quiescent Current:
 - Shutdown Mode: 1 µA (Max.) When EN Low
 - Power Saving Mode: 10 µA (Typ.) When EN High and All LEDs Off for > 30 ms
- Integrated 12-Bit, 29-kHz PWM Generator for Each Channel:
 - Independent Color-Mixing Register Per Channel
 - Independent Brightness-Control Register Per RGB LED Module
 - Optional Logarithmic- or Linear-Scale Brightness Control
 - Integrated 3-Phase-Shifting PWM Scheme
- 3 Programmable Banks (R, G, B) for Easy Software Control of Each Color
- 2 External Hardware Address Pins Allow Connecting up to 4 Devices
- Broadcast Slave Address Allows Configuring Multiple Devices Simultaneously
- Auto-Increment Allows Writing or Reading Consecutive Registers Within One Transmission
- Up to 400-kHz Fast-Mode I²C Speed

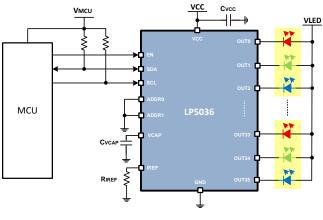
2 Applications

LED Lighting, Indicator Lights, and Fun Lights for:

- Smart Speaker
- Smart Home Appliance
- Doorbell
- Electric Lock
- Smoke Detector
- Set-Top Box
- Smart Router
- Handheld Device

3 Description

There are smart homes and other LED-driver applications for which interaction between persons and machines is necessary. In these applications, more persons think performance is necessary for multi-channel RGB LED drivers. This performance helps to get LED-animation effects for excellent user experiences such as blinking, breathing, and chasing.


The LP503x device is a 30- or 36-channel constantcurrent-sink LED driver. The LP503x device makes the color mixing and *intensity control*, formerly called brightness control, better. Thus, users have the good experience of live effects and writing code easily. The optimization of performance for RGB LEDs makes the device a possible alternative for applications with interaction between persons and machines.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)	
LP5030		F	
LP5036	VQFN (46)	5 mm × 6 mm	

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Texas Instruments

www.ti.com

Table of Contents

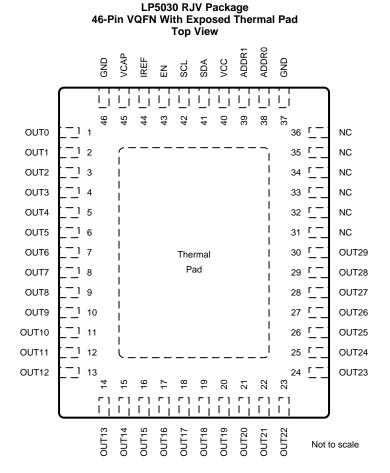
1	Feat	tures 1
2	Арр	lications 1
3	Des	cription1
4	Rev	ision History 2
5	Des	cription (Continued) 3
6	Pin	Configuration and Functions 4
7	Spe	cifications7
	7.1	Absolute Maximum Ratings 7
	7.2	ESD Ratings 7
	7.3	Recommended Operating Conditions 7
	7.4	Thermal Information 7
	7.5	Electrical Characteristics
	7.6	Timing Requirements 9
	7.7	Typical Characteristics 9
8	Deta	ailed Description 10
	8.1	Overview 10
	8.2	Functional Block Diagram 10
	8.3	Feature Description 10

	8.4	Device Functional Modes	16
	8.5	Programming	17
	8.6	Register Maps	21
9	App	lication and Implementation	46
	9.1	Application Information	46
	9.2	Typical Application	
10	Pow	ver Supply Recommendations	49
11	Lay	out	50
	-	Layout Guidelines	
	11.2	Layout Examples	51
12		ice and Documentation Support	
	12.1	Related Links	53
	12.2	Receiving Notification of Documentation Updates	53
	12.3	Community Resources	53
	12.4	Trademarks	53
	12.5	Electrostatic Discharge Caution	53
	12.6	Glossary	53
13	Mec	hanical, Packaging, and Orderable	
		mation	54

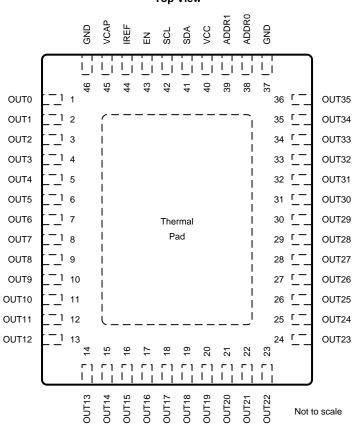
4 Revision History

DATE	REVISION	NOTE
September	*	Initial release

5 Description (Continued)


The LP503x device controls each LED output with a 12-bit PWM resolution at 29-kHz switching frequency. This control helps get an *intensity* that decreases smoothly and stops noise that you can hear. Having different colormixing and intensity-control registers makes writing the software code straightforward. When targeting fade-in, fade-out type breathing effect, the global R, G, B bank control reduces the microcontroller loading significantly. The LP503x device also implements a PWM phase-shifting function to help reduce the input power budget when LEDs turn on simultaneously.

The LP503x device has an automatic power-saving mode to get the ultralow quiescent current. When channels are all off for 30 ms, the device total power consumption is down to 10 μ A, which makes the LP503x device a possible alternative for battery-powered end equipment.


LP5030, LP5036 SLVSEH1 – SEPTEMBER 2018

6 Pin Configuration and Functions

LP5036 RJV Package 46-Pin VQFN With Exposed Thermal Pad Top View

Pin Functions

	PIN			
NAME	N	0.	I/O	DESCRIPTION
NAME	LP5030	LP5036		
ADDR0	38	38		I ² C slave-address selection pin. This pin must not be left floating.
ADDR1	39	39		I ² C slave-address selection pin. This pin must not be left floating.
EN	43	43	Ι	Chip enable input pin
IREF	44	44	_	Output current-reference global-setting pin
NC	31	—	—	No internal connection
NC	32	—		No internal connection
NC	33	—		No internal connection
NC	34	—	_	No internal connection
NC	35	—	_	No internal connection
NC	36	—	—	No internal connection
OUT0	1	1	0	Current sink output 0. If not used, this pin can be left floating.
OUT1	2	2	0	Current sink output 1. If not used, this pin can be left floating.
OUT2	3	3	0	Current sink output 2. If not used, this pin can be left floating.
OUT3	4	4	0	Current sink output 3. If not used, this pin can be left floating.
OUT4	5	5	0	Current sink output 4. If not used, this pin can be left floating.
OUT5	6	6	0	Current sink output 5. If not used, this pin can be left floating.
OUT6	7	7	0	Current sink output 6. If not used, this pin can be left floating.

Pin Functions (continued)

	PIN				
	N	0.	I/O	DESCRIPTION	
NAME	LP5030	LP5036			
OUT7	8	8	0	Current sink output 7. If not used, this pin can be left floating.	
OUT8	9	9	0	Current sink output 8. If not used, this pin can be left floating.	
OUT9	10	10	0	Current sink output 9. If not used, this pin can be left floating.	
OUT10	11	11	0	Current sink output 10. If not used, this pin can be left floating.	
OUT11	12	12	0	Current sink output 11. If not used, this pin can be left floating.	
OUT12	13	13	0	Current sink output 12. If not used, this pin can be left floating.	
OUT13	14	14	0	Current sink output 13. If not used, this pin can be left floating.	
OUT14	15	15	0	Current sink output 14. If not used, this pin can be left floating.	
OUT15	16	16	0	Current sink output 15. If not used, this pin can be left floating.	
OUT16	17	17	0	Current sink output 16. If not used, this pin can be left floating.	
OUT17	18	18	0	Current sink output 17. If not used, this pin can be left floating.	
OUT18	19	19	0	Current sink output 18. If not used, this pin can be left floating.	
OUT19	20	20	0	Current sink output 19. If not used, this pin can be left floating.	
OUT20	21	21	0	Current sink output 20. If not used, this pin can be left floating.	
OUT21	22	22	0	Current sink output 21. If not used, this pin can be left floating.	
OUT22	23	23	0	Current sink output 22. If not used, this pin can be left floating.	
OUT23	24	24	0	Current sink output 23. If not used, this pin can be left floating.	
OUT24	25	25	0	Current sink output 24. If not used, this pin can be left floating.	
OUT25	26	26	0	Current sink output 25. If not used, this pin can be left floating.	
OUT26	27	27	0	Current sink output 26. If not used, this pin can be left floating.	
OUT27	28	28	0	Current sink output 27. If not used, this pin can be left floating.	
OUT28	29	29	0	Current sink output 28. If not used, this pin can be left floating.	
OUT29	30	30	0	Current sink output 29. If not used, this pin can be left floating.	
OUT30	_	31	0	Current sink output 30. If not used, this pin can be left floating.	
OUT31	—	32	0	Current sink output 31. If not used, this pin can be left floating.	
OUT32		33	0	Current sink output 32. If not used, this pin can be left floating.	
OUT33		34	0	Current sink output 33. If not used, this pin can be left floating.	
OUT34		35	0	Current sink output 34. If not used, this pin can be left floating.	
OUT35	_	36	0	Current sink output 35. If not used, this pin can be left floating.	
SCL	42	42	I	I ² C bus clock line. If not used, this pin must be connected to GND or VCC.	
SDA	41	41	I/O	I ² C bus data line. If not used, this pin must be connected to GND or VCC.	
VCAP	45	45		Internal LDO output pin, this pin must be connected to a 1- μ F capacitor to GND.	
VCC	40	40	I	Input power.	
GND	37	37	_	The ground pin for the device.	
GND	46	46	_	The ground pin for the device.	
Thermal pad	GND	GND		Exposed thermal pad also serves as a ground for the device.	

7 Specifications

7.1 Absolute Maximum Ratings

over operating junction temperature range (unless otherwise noted)⁽¹⁾

	MIN MAX	UNIT
Voltage on EN, IREF, OUTx, SCL, SDA, VCC	-0.3 6	V
Voltage on ADDRx	-0.3 VCC+0.3	V
Voltage on VCAP	-0.3 2	V
Continuous power dissipation	Internally limited	
Junction temperature, T _{J-MAX}	-40 125	°C
Storage temperature, T _{stg}	-65 150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±1500	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 $^{\left(2\right) }$	±500	V

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±1500 V may actually have higher performance.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±500 V may actually have higher performance.

7.3 Recommended Operating Conditions

over operating junction temperature range (unless otherwise noted)

	MIN	MAX	UNIT
Input voltage on VCC	2.7	5.5	V
Voltage on OUTx	0	5.5	V
Voltage on ADDRx, EN, SDA, SCL	0	5.5	V
Operating ambient temperature, T _A	-40	85	°C

7.4 Thermal Information

	THERMAL METRIC ⁽¹⁾			
			UNIT	
		32 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	35.7	°C/W	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	29.1	°C/W	
R_{\thetaJB}	Junction-to-board thermal resistance	16.2	°C/W	
ΨJT	Junction-to-top characterization parameter	0.9	°C/W	
ΨЈВ	Junction-to-board characterization parameter	16.2	°C/W	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	6.3	°C/W	

(1) For more information about traditional and new thermal metrics, see Semiconductor and ICPackage Thermal Metrics.

LP5030, LP5036

Texas Instruments

7.5 Electrical Characteristics

over operating junction temperature range	$(-40^{\circ}C < T_A < 125^{\circ}C)$ (unless otherwise noted)
---	--

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT	
POWER S	SUPPLIES (VCC)					
V _{VCC}	Supply voltage		2.7	5.5	V	
	Shutdown supply current	$V_{EN} = 0 V$		0.2 1		
	Standby supply current	$V_{EN} = 3.3 V$, Chip_EN = 0 (bit)		10	μA	
Ivcc	Normal-mode supply current	With 10-mA LED current per OUTx		10	mA	
	Power-save mode supply current	V_{EN} = 3.3 V, Chip_EN = 1 (bit), Power_Save_EN = 1 (bit), all the LEDs off duration > t _{PSM}		10	μA	
V _{UVR}	Undervoltage restart	V _{VCC} rising		2.3	V	
V _{UVF}	Undervoltage shutdown	V _{VCC} falling	2.1		V	
V _{UV_HYS}	Undervoltage shutdown hysteresis			0.1	V	
	STAGE (OUTx)					
I _{MAX}	Maximum sink current (OUT0 – OUT35)	V _{VCC} in full range, Max_Current_Option = 0 (bit), PWM = 100%		25.5	mA	
'WAX	Maximum sink current (OUT0 – OUT35)	V _{VCC} ≥ 3.3 V, Max_Current_Option = 1 (bit), PWM = 100%		35		
	Internal sink current limit (OUT0 – OUT35)	V _{VCC} in full range, Max_Current_Option = 0 (bit), V _{IREF} = 0 V		55 80		
ILIM	Internal sink current limit (OUT0 – OUT35)	$V_{VCC} \ge 3.3V$, Max_Current_Option=1 (bit), $V_{IREF} = 0 V$		75 110	mA	
I _{LKG}	Leakage current (OUT0 - OUT35)	PWM = 0%		0.1 1	μA	
I _{ERR_DD}	Device to device current error, I _{ERR_DD} =(I _{AVE} -I _{SET})/I _{SET} ×100	All channels' current set to 15mA. PWM = 100%. Already includes the V_{IREF} and K_{IREF} tolerance	-7%	7%		
I _{ERR_CC}	Channel to channel current error, I _{ERR_CC} =(I _{OUTX} -I _{AVE})/I _{AVE} ×100	All channels' current set to 15 mA. PWM = 100%. Already includes the V_{IREF} and K_{IREF} tolerance	-7%	7%		
VIREF	IREF voltage			0.7	V	
K _{IREF}	IREF ratio			100		
f_{PWM}	PWM switching frequency			29	kHz	
V _{SAT}	Output saturation voltage	$\begin{array}{l} V_{VCC} \text{ in full range,} \\ Max_Current_Option = 0 \text{ (bit), output} \\ \text{current set to 20 mA, the voltage} \\ \text{when the LED current has dropped} \\ 5\% \end{array}$		0.24	V	
		$V_{VCC} \ge 3.3 \text{ V}, \text{Max}_Current_Option}$ = 1 (bit), output current set to 20 mA, the voltage when the LED current has dropped 5%		0.28		
LOGIC IN	PUTS (EN, SCL, SDA, ADDRx)					
V _{IL}	Low level input voltage			0.4	V	
V _{IH}	High level input voltage		1.4		V	
ILOGIC	Input current		-1	1	μA	
V _{SDA}	SDA output low level	I _{PULLUP} = 5 mA		0.4	V	
PROTECT	TION CIRCUITS					
T _(TSD)	Thermal-shutdown junction temperature			160	°C	
T _(HYS)	Thermal shutdown temperature hysteresis			15	°C	

7.6 Timing Requirements

over operating junction temperature range (-40°C < T_A <125°C) (unless otherwise noted)

		MIN	TYP	MAX	UNIT
fosc	Internal oscillator frequency		15		MHz
t _{PSM}	Power save mode deglitch time	30			ms
t _{EN_H}	EN first rising edge until first I ² C access			500	μs
t _{EN_L}	EN first falling edge until first I ² C reset			3	μs
f _{SCL}	I ² C clock frequency			400	kHz
1	Hold time (repeated) START condition	0.6			μs
2	Clock low time	1.3			μs
3	Clock high time	600			ns
4	Setup time for a repeated START condition	600			ns
5	Data hold time	0			ns
6	Data setup time	100			ns
7	Rise time of SDA and SCL	20 + 0.1 C _b			ns
8	Fall time of SDA and SCL	15 + 0.1 C _b			ns
9	Setup time for STOP condition	600			ns
10	Bus free time between a STOP and a START condition	1.3			μs
C _b	Capacitive load parameter for each bus line Load of 1 pF corresponds to one nanosecond.	10		200	pF

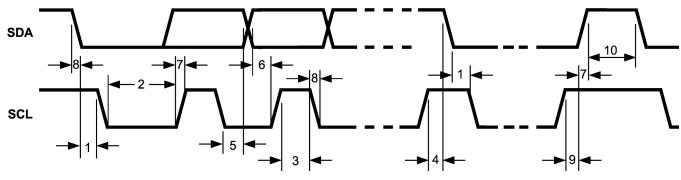
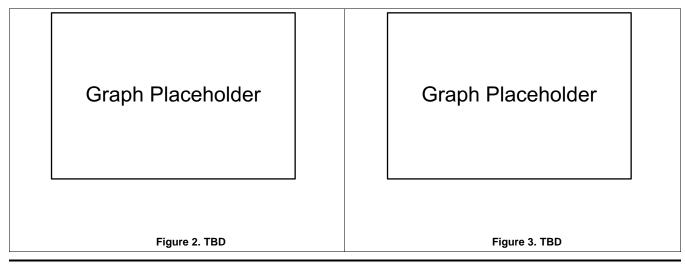
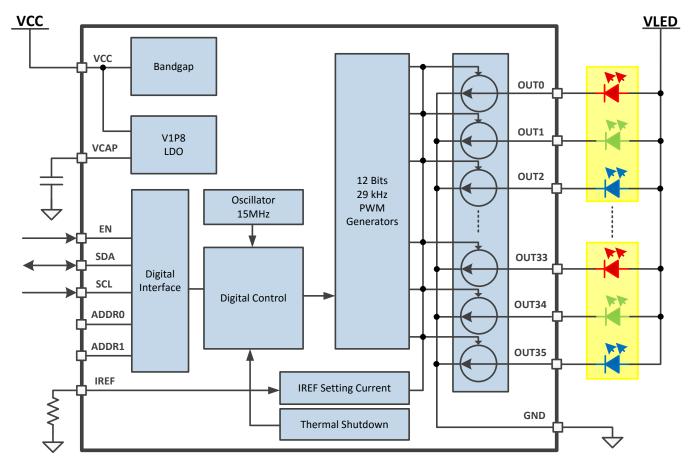



Figure 1. I²C Timing Parameters

7.7 Typical Characteristics

Copyright © 2018, Texas Instruments Incorporated

LP5030, LP5036 SLVSEH1 – SEPTEMBER 2018


8 Detailed Description

8.1 Overview

The LP503x device is a 30- or 36-channel constant-current-sink LED driver. The LP503x device includes all necessary power rails, an on-chip oscillator, and a two-wire serial I^2C interface. The maximum constant-current value of all channels is set by a single external resistor. Two hardware address pins allow up to four devices on the same bus. An automatic power-saving mode is implemented to keep the total current consumption under 10 μ A, which makes the LP503x device a potential choice for battery-powered end-equipment.

The LP503x device is optimized for RGB LEDs regarding both live effects and software efforts. The LP503x device controls each LED output with 12-bit PWM resolution at 29-kHz switching frequency, which helps achieve a smooth dimming effect and eliminates audible noise. The independent color-mixing and intensity-control registers make the software coding straightforward. When targeting a fade-in, fade-out type breathing effect, the global RGB bank control reduces the microcontroller loading significantly. The LP503x device also implements a PWM phase-shifting function to help reduce the input power budget when LEDs turn on simultaneously.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Each Channel PWM Control

Most traditional LED drivers are designed for the single-color LEDs, in which the high resolution PWM generator is used for intensity control only. However, for RGB LEDs, both the color mixing and intensity control should be addressed to achieve the target effect. With the traditional solution, the users must handle the color mixing and intensity control simultaneously with a single PWM register. Several undesired effects occur: the limited dimming steps, the complex software design, and the color distortion when using a logarithmic scale control.

Feature Description (continued)

The LP503x device is designed with independent color mixing and intensity control, which makes the RGB LED effects fancy and the control experience straightforward. With the inputs of the color-mixing register and the intensity-control register, the final PWM generator output for each channel is 12-bit resolution and 29-kHz dimming frequency, which helps achieve a smooth dimming effect and eliminates audible noise. See Figure 4.

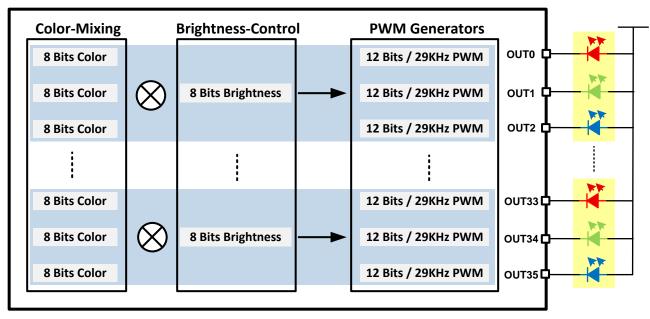


Figure 4. PWM Control Scheme for Each Channel

8.3.1.1 Independent Color Mixing Per RGB LED Module

Each output channel has its own individual 8-bit color-setting register (OUTx_COLOR). The device allows every RGB LED module to achieve >16 million ($256 \times 256 \times 256$) color-mixing.

8.3.1.2 Independent Intensity Control Per RGB LED Module

When color is fixed, the independent intensity-control is used to achieve accurate and flexible dimming control for every RGB LED module.

8.3.1.2.1 Intensity-Control Register Configuration

Every three consecutive output channels are assigned to their respective intensity-control register (LEDx_BRIGHTNESS). For example, OUT0, OUT1, and OUT2 are assigned to LED0_BRIGHTNESS, so it is recommended to connect the RGB LEDs in the sequence as shown in Table 1. The LP503x device allows 256-step intensity control for each RGB LED module, which helps achieve a smooth dimming effect.

Keeping FFh (default value) in the LED0_BRIGHTNESS register results in 100% dimming duty cycle. With this setting, the users can just configure the color mixing register by channel to achieve the target dimming effect in a single-color LED application.

8.3.1.2.2 Logarithmic- or Linear-Scale Intensity Control

For human-eye-friendly visual performance, a logarithmic-scale dimming curve is usually implemented in LED drivers. However, for RGB LEDs, if using a single register to achieve both color mixing and intensity control, color distortion can be observed easily when using a logarithmic scale. The LP503x device, with independent color-mixing and intensity-control registers, implements the logarithmic scale dimming control inside the intensity control function, which solves the color distortion issue effectively. See Figure 5. Also, the LP503x device allows users to configure the dimming scale either logarithmically or linearly through the global Log_Scale_EN register bit. If a special dimming curve is desired, using the linear scale with software correction is the most flexible approach. See Figure 6.

Feature Description (continued)

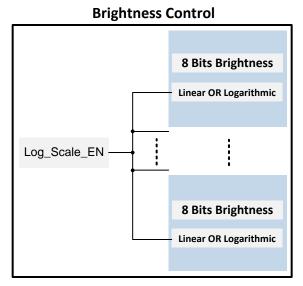
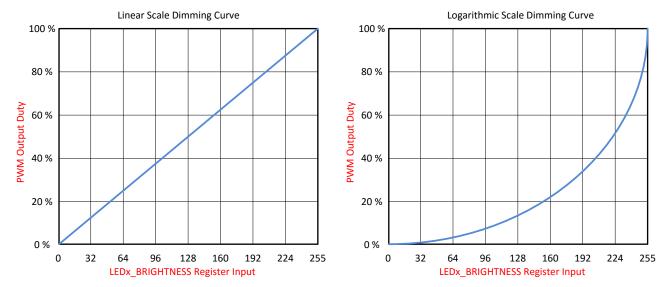



Figure 5. Logarithmic or Linear Scale Intensity Control

8.3.1.3.1 PWM Generator

With the inputs of the color mixing and the intensity control, the final output PWM duty cycle is defined as the product obtained by multiplying the color-mixing register value by the related intensity-control register value. The final output PWM duty cycle has 12 bits of control accuracy, which is achieved by a 9 bits of pure PWM resolution and 3 bits of dithering digital control. For 3-bit dithering, every eighth pulse is made 1 LSB longer to increase the average value by 1 / 8th. The LP503x device allows the users to enable or disable the dithering function through the PWM_Dithering_EN register. When enabled (default), the output PWM duty-cycle accuracy is 12 bits. When disabled, the output PWM duty-cycle accuracy is 9 bits.

To eliminate the audible noise due to the PWM switching, the LP503x device sets the PWM switching frequency at 29-kHz, above the 20-kHz human hearing range.

Feature Description (continued)

8.3.1.4 PWM Phase-Shifting

A PWM phase-shifting scheme allows delaying the time when each LED driver is active. When the LED drivers are not activated simultaneously, the peak load current from the pre-stage power supply is significantly decreased. The scheme also reduces input-current ripple and ceramic-capacitor audible ringing. LED drivers are grouped into three different phases.

- Phase 1—the rising edge of the PWM pulse is fixed. The falling edge of the pulse is changed when the duty cycle changes. Phase 1 is applied to LED0, LED3, ..., LED[3 × (n − 1)].
- Phase 2—the middle point of the PWM pulse is fixed. The pulse spreads in both directions when the PWM duty cycle is increased. Phase 2 is applied to LED1, LED4, ..., LED[3 × (n 1) + 1].
- Phase 3—the falling edge of the PWM pulse is fixed. The rising edge of the pulse is changed when the duty cycle changes. Phase 3 is applied to LED2, LED5, ..., LED[3 × (n − 1) + 2].
- For LP5030, n = 10. For LP5036, n = 12.

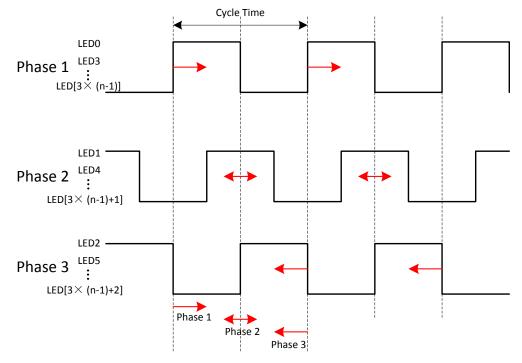


Figure 7. PWM Phase-Shifting

8.3.2 LED Bank Control

For most LED-animation effects, like blinking and breathing, all the RGB LEDs have the same lighting pattern. Instead of controlling the individual LED separately, which occupies the microcontroller resources heavily, the LP503x device provides an easy coding approach, the LED bank control.

Each channel can be configured as either independent control or bank control through the LEDx_Bank_EN register. When LEDx_Bank_EN = 0 (default), the LED is controlled independently by the related color-mixing and intensity-control registers. When LEDx_Bank_EN = 1, the LP503x device drives the LED in LED bank-control mode. The LED bank has its own independent PWM control scheme, which is the same structure as the PWM scheme of each channel. See Each Channel PWM Control for more details. When a channel configured as LED bank-control mode, the related color mixing and intensity control is governed by the bank control registers (BANK_A_COLOR, BANK_B_COLOR, BANK_C_COLOR, and BANK_BRIGHTNESS) regardless of the inputs on its own color-mixing and intensity-control registers.

LP5030, LP5036 SLVSEH1 – SEPTEMBER 2018

Feature Description (continued)

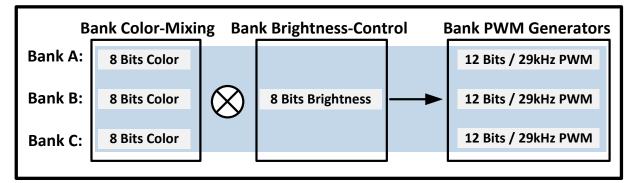


Figure 8. Bank PWM Control Scheme

OUT NUMBER	BANK Number	RGB LED MODULE NUMBER		
OUT0	Bank A			
OUT1	Bank B	LED0		
OUT2	Bank C			
OUT3	Bank A			
OUT4	Bank B	LED1		
OUT5	Bank C			
OUT6	Bank A			
OUT7	Bank B	LED2		
OUT8	Bank C			
OUT9	Bank A			
OUT10	Bank B	LED3		
OUT11	Bank C			
OUT12	Bank A			
OUT13	Bank B	LED4		
OUT14	Bank C			
OUT15	Bank A			
OUT16	Bank B	LED5		
OUT17	Bank C			
OUT18	Bank A			
OUT19	Bank B	LED6		
OUT20	Bank C			
OUT21	Bank A			
OUT22	Bank B	LED7		
OUT23	Bank C			
OUT24	Bank A			
OUT25	Bank B	LED8		
OUT26	Bank C			
OUT27	Bank A			
OUT28	OUT28 Bank B			
OUT29	Bank C			

Table 1. Bank Number and LED Number Assignment

Feature Description (continued)

0	, ,
BANK Number	RGB LED MODULE NUMBER
Bank A	
Bank B	LED10 ⁽¹⁾
Bank C	
Bank A	
Bank B	LED11 ⁽¹⁾
Bank C	
	BANK Number Bank A Bank B Bank C Bank A Bank B

Table 1	Bank Number	and LED Number	Assignment	(continued)
			Assignment	continucu)

(1) For LP5036 only

With the bank control configuration, the LP503x device enables users to achieve smooth and live LED effects globally with an ultrasimple software effort. Figure 9 shows an example using LED0 as an independent RGB indicator and others with group breathing effect.

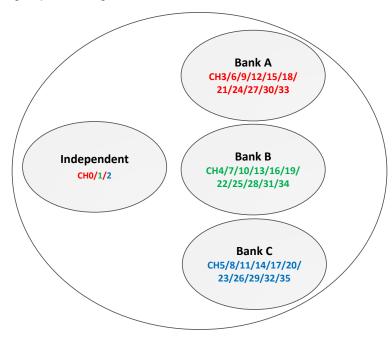


Figure 9. Bank PWM Control Example

8.3.3 Current Range Setting

The maximum constant-current value of all 30 or 36 channels is set by a single external resistor, R_{IREF} . The value of R_{IREF} can be calculated by Equation 1.

$$R_{IREF} = K_{IREF} \times \frac{V_{IREF}}{I_{SET}}$$

where:

- K_{IREF} = 105
 - $V_{IREF} = 0.7 V$

(1)

ADVANCE INFORMATION

With the IREF pin floating, the output current is close to zero. With the IREF pin shorted to GND, the LP503x device provides internal current-limit protection, and the output-channel maximum current is limited to I_{LIM}.

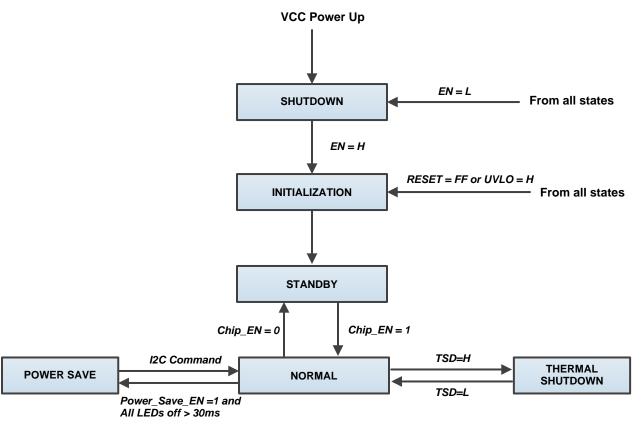
The LP503x device supports two levels of maximum output current, I_{MAX} .

- When V_{CC} is in the range from 2.7 V to 5.5 V, and the Max_Current_Option (bit) = 0, I_{MAX} = 25.5 mA.
- When V_{CC} is in the range from 3.3 V to 5.5 V, and the Max_Current_Option (bit) = 1, I_{MAX} = 35 mA.

8.3.4 Automatic Power-Save Mode

When all the LED outputs are inactive, the LP503x device is able to enter power-save mode automatically, thus lowering idle-current consumption down to 10 μ A (typical). Automatic power-save mode is enabled when register bit Power_Save_EN = 1 (default) and all the LEDs are off for a duration of >30 ms. Almost all analog blocks are powered down in power-save mode. If any I²C command to the device occurs, the LP503x device returns to NORMAL mode.

8.3.5 Protection Features


8.3.5.1 Thermal Shutdown

The LP503x device implements a thermal shutdown mechanism to protect the device from damage due to overheating. When the junction temperature rises to 160°C (typical), the device switches into shutdown mode. The LP503x device releases thermal shutdown when the junction temperature of the device is reduced to 145°C (typical).

8.3.5.2 UVLO

The LP503x device has an internal comparator that monitors the voltage at V_{CC} . When V_{CC} is below V_{UVF} , reset is active and the LP503x device is in the INITIALIZATION state.

8.4 Device Functional Modes

Figure 10. Functional Modes

- **INITIALIZATION**: The device enters into INITIALIZATION mode when EN = H. In this mode, all the registers are reset. Entry can also be from any state, if the RESET (register) = FFh or UVLO is active.
- NORMAL: The device enters the NORMAL mode when Chip_EN (register) = 1. I_{CC} is 10 mA (typ.).
- POWER SAVE: The device automatically enters the POWER SAVE mode when Power_Save_EN (register) =

 and all the LEDs are off for a duration of >30 ms. In POWER SAVE mode, analog blocks are disabled to
 minimize power consumption, but the registers retain the data and keep it available via I²C. I_{CC} is 10 μA (typ.).

Device Functional Modes (continued)

In case of any I²C command to this device, it goes back to the NORMAL mode.

- **SHUTDOWN**: The device enters into SHUTDOWN mode from all states on V_{CC} power up or when EN = L. I_{CC} is < 1 µA (max).
- STANDBY: The device enters the STANDBY mode when Chip_EN (register bit) = 0. In this mode, all the OUTx are shut down, but the registers retain the data and keep it available via I²C. STANDBY is the low-power-consumption mode, when all circuit functions are disabled. I_{CC} is 10 μA (typ.).
- **THERMAL SHUTDOWN**: The device automatically enters the THERMAL SHUTDOWN mode when the junction temperature exceeds 160°C (typical). In this mode, all the OUTx outputs are shut down. If the junction temperature decreases below 145°C (typical), the device returns to the NORMAL mode.

8.5 Programming

8.5.1 I²C Interface

The I²C-compatible two-wire serial interface provides access to the programmable functions and registers on the device. This protocol uses a two-wire interface for bidirectional communications between the devices connected to the bus. The two interface lines are the serial data line (SDA) and the serial clock line (SCL). Every device on the bus is assigned a unique address and acts as either a master or a slave depending on whether it generates or receives the serial clock, SCL. The SCL and SDA lines should each have a pullup resistor placed somewhere on the line and remain HIGH even when the bus is idle.

8.5.1.1 Data Validity

The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, the state of the data line can only be changed when the clock signal is LOW.

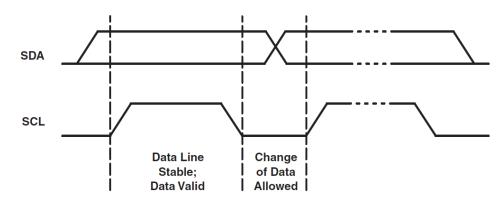


Figure 11. Data Validity

8.5.1.2 Start and Stop Conditions

START and STOP conditions classify the beginning and the end of the data transfer session. A START condition is defined as the SDA signal transitioning from HIGH to LOW while the SCL line is HIGH. A STOP condition is defined as the SDA transitioning from LOW to HIGH while SCL is HIGH. The bus master always generates START and STOP conditions. The bus is considered to be busy after a START condition and free after a STOP condition. During data transmission, the bus master can generate repeated START conditions. First START and repeated START conditions are functionally equivalent.

Texas Instruments

www.ti.com

Programming (continued)

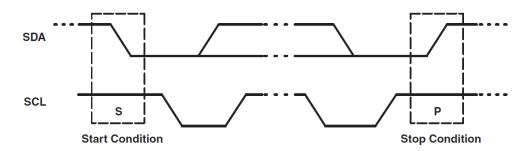


Figure 12. Start and Stop Conditions

8.5.1.3 Transferring Data

Every byte put on the SDA line must be eight bits long, with the most-significant bit (MSB) being transferred first. Each byte of data must be followed by an acknowledge bit. The acknowledge-related clock pulse is generated by the master. The master releases the SDA line (HIGH) during the acknowledge clock pulse. The device pulse down the SDA line during the 9th clock pulse, signifying an acknowledge. The device generates an acknowledge after each byte has been received.

There is one exception to the acknowledge-after-every-byte rule. When the master is the receiver, it must indicate to the transmitter an end of data by not acknowledging (negative acknowledge) the last byte clocked out of the slave. This negative acknowledge still includes the acknowledge clock pulse (generated by the master), but the SDA line is not pulled down.

After the START condition, the bus master sends a chip address. This address is seven bits long followed by an eighth bit, which is a data direction bit (READ or WRITE). For the eighth bit, a 0 indicates a WRITE, and a 1 indicates a READ. The second byte selects the register to which the data is written. The third byte contains data to write to the selected register.

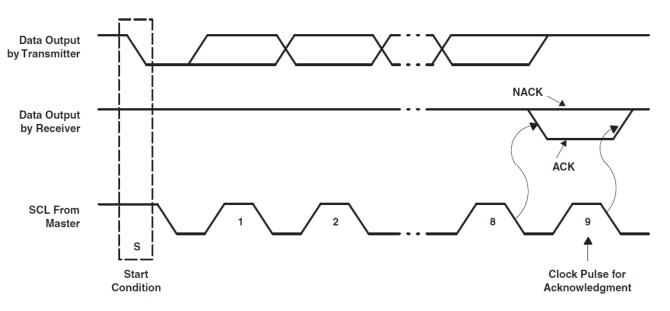


Figure 13. Acknowledge and Not Acknowledge on I²C Bus

8.5.1.4 PC Slave Addressing

The device slave address is defined by connecting GND or VCC to the ADDR0 and ADDR1 pins. A total of four independent slave addresses can be realized by combinations when GND or VCC is connected to the ADDR0 and ADDR1 pins (see Table 2 and Table 3).

Programming (continued)

The device responds to a broadcast slave address regardless of the setting of the ADDR0 and ADDR1 pins. Global writes to the broadcast address can be used for configuring all devices simultaneously. The device supports global read using a broadcast address; however, the data read is only valid if all devices on the I²C bus contain the same value in the addressed register.

ADDR1	ADDR0	SLAVE ADDRESS				
ADDRI	ADDRU	INDEPENDENT	BROADCAST			
GND	GND	011 0000				
GND	VCC	011 0001	001 1100			
VCC	GND	011 0010	001 1100			
VCC	VCC	011 0011				

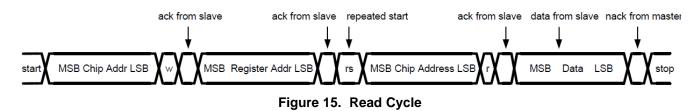
Table 2. Slave-Address Combinations

Table 3. Chip Address

	SLAVE ADDRESS							R/W
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Independent	0	1	1	0	0	ADDR1	ADDR0	1 or 0
Broadcast	0	0	1	1	1	0	0	1 or 0

8.5.1.5 Control-Register Write Cycle

- The master device generates a start condition.
- The master device sends the slave address (7 bits) and the data direction bit ($R/\overline{W} = 0$).
- The slave device sends an acknowledge signal if the slave address is correct.
- The master device sends the control register address (8 bits). .
- The slave device sends an acknowledge signal.
- The master device sends the data byte to be written to the addressed register.
- The slave device sends an acknowledge signal.
- If the master device sends further data bytes, the control register address of the slave is incremented by 1 after the acknowledge signal. To reduce program load time, the device supports address auto incrementation. The register address is incremented after each 8 data bits.
- The write cycle ends when the master device creates a stop condition.



8.5.1.6 Control-Register Read Cycle

- The master device generates a start condition.
- The master device sends the slave address (7 bits) and the data direction bit (R/W = 0).
- The slave device sends an acknowledge signal if the slave address is correct.
- The master device sends the control register address (8 bits).
- The slave device sends an acknowledge signal.
- The master device generates a repeated-start condition.
- The master device sends the slave address (7 bits) and the data direction bit (R/W = 1).
- The slave device sends an acknowledge signal if the slave address is correct.
- The slave device sends the data byte from the addressed register.
- If the master device sends an acknowledge signal, the control-register address is incremented by 1. The

slave device sends the data byte from the addressed register. To reduce program load time, the device supports address auto incrementation. The register address is incremented after each 8 data bits.

• The read cycle ends when the master device does not generate an acknowledge signal after a data byte and generates a stop condition.

8.5.1.7 Auto-Increment Feature

The auto-increment feature allows writing or reading several consecutive registers within one transmission. For example, when an 8-bit word is sent to the device, the internal address index counter is incremented by 1, and the next register is written. The auto-increment feature is enabled by default and can be disabled by setting the Auto_Incr_EN bit = 0 in the DEVICE_CONFIG1 register. The auto-increment feature is applied for the full register address from 0h to FFh.

ADVANCE INFORMATION

8.6 Register Maps

Table 4 lists the memory-mapped registers of the device.

Table 4. Register Maps											
REGISTER NAME	ADDR	TYPE	D7	D6	D5	D4	D3	D2	D1	D0	DEF AULT
DEVICE_CONFI G0	00h	R/W	RESERVED	Chip_EN	Chip_EN RESERVED					00h	
DEVICE_CONFI G1	01h	R/W	RESE	RVED	Log_Scale_EN	Power_Save_EN	Auto_Incr_EN	PWM_Ditherin g_EN	Max_Current_ Option	LED_Global Off	3Ch
LED_CONFIG0	02h	R/W	LED7_Bank_EN	LED6_Bank_EN	LED5_Bank_EN	LED4_Bank_EN	LED3_Bank_EN	LED2_Bank_E N	LED1_Bank_E N	LED0_Bank_E N	00h
LED_CONFIG1	03h	R/W		RESE	RVED		LED11_Bank_E N	LED10_Bank_ EN	LED9_Bank_E N	LED8_Bank_E N	00h
BANK_BRIGHTN ESS	04h	R/W				Bank_Brigh	tness				FFh
BANK_A_COLO R	05h	R/W				Bank_A_C	Color				00h
BANK_B_COLO R	06h	R/W				Bank_B_C	Color				00h
BANK_C_COLO R	07h	R/W		Bank_C_Color							
LED0_BRIGHTN ESS	08h	R/W		LED0_Brightness							
LED1_BRIGHTN ESS	09h	R/W		LED1_Brightness							
LED2_BRIGHTN ESS	0Ah	R/W				LED2_Brigh	ntness				FFh
LED3_BRIGHTN ESS	0Bh	R/W				LED3_Brigh	ntness				FFh
LED4_BRIGHTN ESS	0Ch	R/W				LED4_Brigh	ntness				FFh
LED5_BRIGHTN ESS	0Dh	R/W				LED5_Brigh	ntness				FFh
LED6_BRIGHTN ESS	0Eh	R/W		LED6_Brightness							
LED7_BRIGHTN ESS	0Fh	R/W		LED7_Brightness							FFh
LED8_BRIGHTN ESS	10h	R/W		LED8_Brightness							FFh
LED9_BRIGHTN ESS	11h	R/W				LED9_Brigh	ntness				FFh

Table 4. Register Maps

Copyright © 2018, Texas Instruments Incorporated

Submit Documentation Feedback 21

REGISTER NAME	ADDR	TYPE	D7	D6	D5	D4	D3	D2	D1	D0	DEF AULT	
LED10_BRIGHT NESS	12h	R/W		LED10_Brightness								
LED11_BRIGHT NESS	13h	R/W		LED11_Brightness								
OUT0_COLOR	14h	R/W				OUT0_C	olor				00h	
OUT1_COLOR	15h	R/W				OUT1_C	olor				00h	
OUT2_COLOR	16h	R/W				OUT2_C	olor				00h	
OUT3_COLOR	17h	R/W				OUT3_C	olor				00h	
OUT4_COLOR	18h	R/W				OUT4_C	olor				00h	
OUT5_COLOR	19h	R/W				OUT5_C	olor				00h	
OUT6_COLOR	1Ah	R/W				OUT6_C	olor				00h	
OUT7_COLOR	1Bh	R/W				OUT7_C	olor				00h	
OUT8_COLOR	1Ch	R/W				OUT8_C	olor				00h	
OUT9_COLOR	1Dh	R/W		OUT9_Color								
OUT10_COLOR	1Eh	R/W		OUT10_Color								
OUT11_COLOR	1Fh	R/W		OUT11_Color								
OUT12_COLOR	20h	R/W				OUT12_0	Color				00h	
OUT13_COLOR	21h	R/W				OUT13_0	Color				00h	
OUT14_COLOR	22h	R/W				OUT14_0	Color				00h	
OUT15_COLOR	23h	R/W				OUT15_0	Color				00h	
OUT16_COLOR	24h	R/W				OUT16_0	Color				00h	
OUT17_COLOR	25h	R/W				OUT17_(Color				00h	
OUT18_COLOR	26h	R/W				OUT18_0	Color				00h	
OUT19_COLOR	27h	R/W				OUT19_0	Color				00h	
OUT20_COLOR	28h	R/W				OUT20_0	Color				00h	
OUT21_COLOR	29h	R/W				OUT21_0	Color				00h	
OUT22_COLOR	2Ah	R/W		OUT22_Color							00h	
OUT23_COLOR	2Bh	R/W				OUT23_0	Color				00h	
OUT24_COLOR	2Ch	R/W				OUT24_0	Color				00h	
OUT25_COLOR	2Dh	R/W		OUT25_Color							00h	
OUT26_COLOR	2Eh	R/W				OUT26_0	Color				00h	
OUT27_COLOR	2Fh	R/W				OUT27_0	Color				00h	

Table 4. Register Maps (continued)

LP5030, LP5036 SLVSEH1 – SEPTEMBER 2018

ADVANCE INFORMATION

www.ti.com

Register Maps (continued)

Table 4. Register Maps (continued)

REGISTER NAME	ADDR	TYPE	D7	D6	D5	D4	D3	D2	D1	D0	DEF AULT		
OUT28_COLOR	30h	R/W		OUT28_Color									
OUT29_COLOR	31h	R/W				OUT29_0	Color				00h		
OUT30_COLOR	32h	R/W		OUT30_Color									
OUT31_COLOR	33h	R/W		OUT31_Color									
OUT32_COLOR	34h	R/W				OUT32_0	Color				00h		
OUT33_COLOR	35h	R/W				OUT33_0	Color				00h		
OUT34_COLOR	36h	R/W		OUT34_Color									
OUT35_COLOR	37h	R/W		OUT35_Color									
RESET	38h	W		Reset									

Texas Instruments

www.ti.com

Table 5. Access Type Codes

ACCESS TYPE	CODE	DESCRIPTION					
Read Type							
R	R	Read					
Write Type							
W	W	Write					
Reset or Default Value							
-n		Value after reset or the default value					

8.6.1 DEVICE_CONFIG0 (Address = 0h) [reset = 0h]

DEVICE_CONFIG0 is shown in Figure 16 and described in Table 6.

Return to Table 4.

Figure 16. DEVICE_CONFIG0 Register

7	6	5	4	3	2	1	0
RESERVED	Chip_EN			RESE	RVED		
R/W-0h	R/W-0h			R/W	7-0h		

Table 6. DEVICE_CONFIG0 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	RESERVED	R/W	0h	Reserved
6	Chip_EN	R/W	0h	0 = LP503x not enabled
				1 = LP503x enabled
5–0	RESERVED	R/W	0h	Reserved

8.6.2 DEVICE_CONFIG1 (Address = 1h) [reset = 3Ch]

DEVICE_CONFIG1 is shown in Figure 17 and described in Table 7.

Return to Table 4.

Figure 17. DEVICE_CONFIG1 Register

7	6	5	4	3	2	1	0
RESE	RVED	Log_Scale_EN	Power_Save_E N	Auto_Incr_EN	PWM_Dithering EN	Max_Current_O	LED_Global Off
R/W	-0h	R/W-1h	R/W-1h	R/W-1h	R/W-1h	R/W-0h	R/W-0h

Table 7. DEVICE_CONFIG1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–6	RESERVED	R/W	0h	Reserved
5	Log_Scale_EN	R/W	1h	0 = Linear scale dimming curve enabled
				1 = Logarithmic scale dimming curve enabled
4	Power_Save_EN	R/W	1h	0 = Automatic power-saving mode not enabled
				1 = Automatic power-saving mode enabled
3	Auto_Incr_EN	R/W	1h	0 = Automatic increment mode not enabled
				1 = Automatic increment mode enabled
2	PWM_Dithering_EN	R/W	1h	0 = PWM dithering mode not enabled
				1 = PWM dithering mode enabled
1	Max_Current_Option	R/W	0h	0 = Output maximum current I _{MAX} = 25.5 mA.
				1 = Output maximum current I_{MAX} = 35 mA.

Table 7. DEVICE_CONFIG1 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
0	LED_Global Off	R/W	0h	0 = Normal operation
				1 = Shut down all LEDs

8.6.3 LED_CONFIG0 (Address = 2h) [reset = 00h]

LED_CONFIG0 is shown in Figure 18 and described in Table 8.

Return to Table 4.

Figure 18. LED_CONFIG0 Register

7	6	5	4	3	2	1	0
LED7_Bank_E	LED6_Bank_E	LED5_Bank_E	LED4_Bank_E	LED3_Bank_E	LED2_Bank_E	LED1_Bank_E	LED0_Bank_E
N	N	N	N	N	N	N	N
R/W-0h							

Table 8. LED_CONFIG0 Register Field Descriptions

Bit	Field	Туре	Reset	Description	
7	LED7_Bank_EN	R/W	0h	0 = LED7 independent control mode enabled	
				1 = LED7 bank control mode enabled	
6	LED6_Bank_EN	R/W	0h	0 = LED6 independent control mode enabled	
				1 = LED6 bank control mode enabled	
5	LED5_Bank_EN	R/W	0h	0 = LED5 independent control mode enabled	
				1 = LED5 bank control mode enabled	
4	LED4_Bank_EN	R/W	0h	0 = LED4 independent control mode enabled	
				1 = LED4 bank control mode enabled	
3	LED3_Bank_EN	R/W	0h	0 = LED3 Independent control mode enabled	
				1 = LED3 bank control mode enabled	
2	LED2_Bank_EN	R/W	0h	0 = LED2 independent control mode enabled	
				1 = LED2 bank control mode enabled	
1	LED1_Bank_EN	R/W	0h	0 = LED1 independent control mode enabled	
				1 = LED1 bank control mode enabled	
0	LED0_Bank_EN	R/W	0h	0 = LED0 independent control mode enabled	
1				1 = LED0 bank control mode enabled	

8.6.4 LED_CONFIG1 (Address = 3h) [reset = 00h]

LED_CONFIG1 is shown in Figure 18 and described in Table 8. Return to Table 4.

Figure 19. LED_CONFIG1 Register

7	6	5	4	3	2	1	0
	RESE	RVED		LED11_Bank_E N	LED10_Bank_E N	LED9_Bank_E N	LED8_Bank_E N
	R/W	7-0h		R/W-0h	R/W-0h	R/W-0h	R/W-0h

Table 9. LED_CONFIG1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
4–7	RESERVED	R/W	0h	Reserved
3	LED11_Bank_EN	R/W	0h	0 = LED3 Independent control mode enabled
				1 = LED3 bank control mode enabled

Copyright © 2018, Texas Instruments Incorporated

Texas Instruments

www.ti.com

Table 9, LED	CONFIG1	Register	Field	Descriptions	(continued)
	_00111101	riegister	1 1010	Descriptions	(oonanaca)

Bit	Field	Туре	Reset	Description	
2	LED10_Bank_EN	R/W	0h	0 = LED2 independent control mode enabled	
				1 = LED2 bank control mode enabled	
1	LED9_Bank_EN	R/W	0h	0 = LED1 independent control mode enabled	
				1 = LED1 bank control mode enabled	
0	LED8_Bank_EN	R/W	0h	0 = LED0 independent control mode enabled	
				1 = LED0 bank control mode enabled	

8.6.5 BANK_BRIGHTNESS (Address = 4h) [reset = FFh]

BANK_BRIGHTNESS is shown in Figure 20 and described in Table 10.

Return to Table 4.

Figure 20. BANK_BRIGHTNESS Register

7	6	5	4	3	2	1	0
			BANK_BR	IGHTNESS			
			R/W				

Table 10. BANK_BRIGHTNESS Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	BANK_BRIGHTNESS	R/W	FFh	00h = 0% of full intensity
				80h = 50% of full
				FFh = 100 % of full intensity

8.6.6 BANK_A_COLOR (Address = 5h) [reset = 00h]

BANK_A_COLOR is shown in Figure 21 and described in Table 11.

Return to Table 4.

Figure 21. BANK_A_COLOR Register

7	6	5	4	3	2	1	0
			BANK_A	_COLOR			
			R/W	7-0h			

Table 11. BANK_A_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	BANK_A_COLOR	R/W	0h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.7 BANK_B_COLOR (Address = 6h) [reset = 00h]

BANK_B_COLOR is shown in Figure 22 and described in Table 12.

Return to Table 4.

Figure 22. BANK_B_COLOR Register

7	6	5	4	3	2	1	0
BANK_B_COLOR							
			R/V	V-0h			

Table 12. BANK_B_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	BANK_B_COLOR	R/W	0h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.8 BANK_C_COLOR (Address = 7h) [reset = 00h]

BANK_C_COLOR is shown in Figure 23 and described in Table 13.

Return to Table 4.

Figure 23. BANK_C_COLOR Register

7	6	5	4	3	2	1	0		
	BANK_C_COLOR								
	R/W-0h								

Table 13. BANK_C_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	BANK_C_COLOR	R/W	0h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.9 LED0_BRIGHTNESS (Address = 8h) [reset = FFh]

LED0_BRIGHTNESS is shown in Figure 24 and described in Table 14.

Return to Table 4.

Figure 24. LED0_BRIGHTNESS Register

7	6	5	4	3	2	1	0
			LED0_BRI	GHTNESS			
			R/W				

Table 14. LED0_BRIGHTNESS Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	LED0_BRIGHTNESS	R/W	FFh	00h = 0% of full intensity
				80h = 50% of full intensity
				FFh = 100 % of full intensity

8.6.10 LED1_BRIGHTNESS (Address = 9h) [reset = FFh]

LED1_BRIGHTNESS is shown in Figure 25 and described in Table 15.

Return to Table 4.

Figure 25. LED1_BRIGHTNESS Register

7	6	5	4	3	2	1	0		
LED1_BRIGHTNESS									
	R/W-FFh								

Table 15. LED1_BRIGHTNESS Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	LED1_BRIGHTNESS	R/W	FFh	00h = 0% of full intensity
				 80h = 50% of full intensity
				FFh = 100 % of full intensity

8.6.11 LED2_BRIGHTNESS (Address = 0Ah) [reset = FFh]

LED2_BRIGHTNESS is shown in Figure 26 and described in Table 16. Return to Table 4.

Figure 26. LED2_BRIGHTNESS Register

7	6	5	4	3	2	1	0	
	LED2_BRIGHTNESS							
			R/W	-FFh				

Table 16. LED2_BRIGHTNESS Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	LED2_BRIGHTNESS	R/W	FFh	00h = 0% of full intensity
				80h = 50% of full intensity
				FFh = 100 % of full intensity

8.6.12 LED3_BRIGHTNESS (Address = 0Bh) [reset = FFh]

LED3_BRIGHTNESS is shown in Figure 27 and described in Table 17. Return to Table 4.

Figure 27. LED3_BRIGHTNESS Register

7	6	5	4	3	2	1	0
			LED3_BRI	GHTNESS			
			R/W	-FFh			

Bit	Field	Туре	Reset	Description
7–0	LED3_BRIGHTNESS	R/W	FFh	00h = 0% of full intensity
				80h = 50% of full intensity
				FFh = 100 % of full intensity

Table 17. LED3_BRIGHTNESS Register Field Descriptions

8.6.13 LED4_BRIGHTNESS (Address = 0Ch) [reset = FFh]

LED4_BRIGHTNESS is shown in Figure 28 and described in Table 18.

Return to Table 4.

Figure 28. LED4_BRIGHTNESS Register

7	6	5	4	3	2	1	0
LED4_BRIGHTNESS							
			R/W	-FFh			

Table 18. LED4_BRIGHTNESS Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	LED4_BRIGHTNESS	R/W	FFh	00h = 0% of full intensity
				80h = 50% of full intensity
				FFh = 100 % of full intensity

8.6.14 LED5_BRIGHTNESS (Address = 0Dh) [reset = FFh]

LED5_BRIGHTNESS is shown in Figure 29 and described in Table 19.

Return to Table 4.

Figure 29. LED5_BRIGHTNESS Register

7	6	5	4	3	2	1	0
			LED5_BRI	IGHTNESS			
			R/W	-FFh			

Table 19. LED5_BRIGHTNESS Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	LED5_BRIGHTNESS	R/W	FFh	00h = 0% of full intensity
				 80h = 50% of full intensity FFh = 100 % of full intensity

8.6.15 LED6_BRIGHTNESS (Address = 0Eh) [reset = FFh]

LED6_BRIGHTNESS is shown in Figure 30 and described in Table 20.

Return to Table 4.

ADVANCE INFORMATION

Figure 30. LED6_BRIGHTNESS Register

7	6	5	4	3	2	1	0
			LED6_BR	IGHTNESS			
			R/W	-FFh			

Table 20. LED6_BRIGHTNESS Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	LED6_BRIGHTNESS	R/W	FFh	00h = 0% of full intensity
				80h = 50% of full intensity
				FFh = 100 % of full intensity

8.6.16 LED7_BRIGHTNESS (Address = 0Fh) [reset = FFh]

LED7_BRIGHTNESS is shown in Figure 31 and described in Table 21.

Return to Table 4.

Figure 31. LED7_BRIGHTNESS Register

7	6	5	4	3	2	1	0
			LED7_BRI	IGHTNESS			
			R/W	-FFh			

Table 21. LED7_BRIGHTNESS Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	LED7_BRIGHTNESS	R/W	FFh	00h = 0% of full intensity
				 80h = 50% of full intensity
				 FFh = 100 % of full intensity

8.6.17 LED8_BRIGHTNESS (Address = 10h) [reset = FFh]

LED8_BRIGHTNESS is shown in Figure 32 and described in Table 22.

Return to Table 4.

Figure 32. LED8_BRIGHTNESS Register

7	6	5	4	3	2	1	0
			LED8_BRI	GHTNESS			
			R/W	-FFh			

Table 22. LED8_BRIGHTNESS Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	LED8_BRIGHTNESS	R/W	FFh	00h = 0% of full intensity
				80h = 50% of full intensity
				FFh = 100 % of full intensity

8.6.18 LED9_BRIGHTNESS (Address = 11h) [reset = FFh]

LED9_BRIGHTNESS is shown in Figure 33 and described in Table 23.

Return to Table 4.

Figure 33. LED9_BRIGHTNESS Register

7	6	5	4	3	2	1	0		
	LED9_BRIGHTNESS								
			R/W	-FFh					

Table 23. LED9_BRIGHTNESS Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	LED9_BRIGHTNESS	R/W	FFh	00h = 0% of full intensity
				 80h = 50% of full intensity FFh = 100 % of full intensity

8.6.19 LED10_BRIGHTNESS (Address = 12h) [reset = FFh]

LED10_BRIGHTNESS is shown in Figure 34 and described in Table 24. Return to Table 4.

Figure 34. LED10_BRIGHTNESS Register

7	6	5	4	3	2	1	0
			LED10_BR	IGHTNESS			
			R/W				

Table 24. LED10_BRIGHTNESS Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	LED10_BRIGHTNESS	R/W	FFh	00h = 0% of full intensity
				80h = 50% of full intensity
				FFh = 100 % of full intensity

8.6.20 LED11_BRIGHTNESS (Address = 13h) [reset = FFh]

LED11_BRIGHTNESS is shown in Figure 35 and described in Table 25. Return to Table 4.

Figure 35. LED11_BRIGHTNESS Register

7	6	5	4	3	2	1	0	
LED11_BRIGHTNESS								
			R/W	-FFh				

Bit	Field	Туре	Reset	Description
7–0	LED11_BRIGHTNESS	R/W	FFh	00h = 0% of full intensity
				80h = 50% of full intensity
				FFh = 100 % of full intensity

Table 25. LED11_BRIGHTNESS Register Field Descriptions

8.6.21 OUT0_COLOR (Address = 14h) [reset = 00h]

OUT0_COLOR is shown in Figure 36 and described in Table 26.

Return to Table 4.

Figure 36. OUT0_COLOR Register

7	6	5	4	3	2	1	0
OUT0_COLOR							
			R/W	-00h			

Table 26. OUT0_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT0_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.22 OUT1_COLOR (Address = 15h) [reset = 00h]

OUT1_COLOR is shown in Figure 37 and described in Table 27.

Return to Table 4.

Figure 37. OUT1_COLOR Register

7	6	5	4	3	2	1	0		
	OUT1_COLOR								
			R/W	-00h					

Table 27. OUT1_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT1_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.23 OUT2_COLOR (Address = 16h) [reset = 00h]

OUT2_COLOR is shown in Figure 38 and described in Table 28.

Return to Table 4.

LP5030, LP5036 SLVSEH1 – SEPTEMBER 2018

Figure 38. OUT2_COLOR Register

7	6	5	4	3	2	1	0	
OUT2_COLOR								
			R/W	-00h				

Table 28. OUT2_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT2_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				80h = The color mixing percentage is 50%.
				FFh = The color mixing percentage is 100%.

8.6.24 OUT3_COLOR (Address = 17h) [reset = 00h]

OUT3_COLOR is shown in Figure 39 and described in Table 29.

Return to Table 4.

Figure 39. OUT3_COLOR Register

7	6	5	4	3	2	1	0	
OUT3_COLOR								
			R/W	-00h				

Table 29. OUT3_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT3_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.25 OUT4_COLOR (Address = 18h) [reset = 00h]

OUT4_COLOR is shown in Figure 40 and described in Table 30.

Return to Table 4.

Figure 40. OUT4_COLOR Register

7	6	5	4	3	2	1	0					
	OUT1_COLOR											
			R/W-00h									

Table 30. OUT4_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT4_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.26 OUT5_COLOR (Address = 19h) [reset = 00h]

OUT5_COLOR is shown in Figure 41 and described in Table 31.

Return to Table 4.

Figure 41. OUT5_COLOR Register

7	6	5	4	3	2	1	0			
	OUT5_COLOR									
	R/W-00h									

Table 31. OUT5_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT5_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.27 OUT6_COLOR (Address = 1Ah) [reset = 00h]

OUT6_COLOR is shown in Figure 42 and described in Table 32.

Return to Table 4.

Figure 42. OUT6_COLOR Register

7	6	5	4	3	2	1	0			
			OUT6_	COLOR						
	R/W-00h									

Table 32. OUT6_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT6_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.28 OUT7_COLOR (Address = 1Bh) [reset = 00h]

OUT7_COLOR is shown in Figure 43 and described in Table 33. Return to Table 4.

Figure 43. OUT7_COLOR Register

7	6	5	4	3	2	1	0			
	OUT7_COLOR									
			R/W	-00h						

Bit	Field	Туре	Reset	Description
7–0	OUT7_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				80h = The color mixing percentage is 50%.
				FFh = The color mixing percentage is 100%.

Table 33. OUT7_COLOR Register Field Descriptions

8.6.29 OUT8_COLOR (Address = 1Ch) [reset = 00h]

OUT8_COLOR is shown in Figure 44 and described in Table 34.

Return to Table 4.

Figure 44. OUT8_COLOR Register

7	6	5	4	3	2	1	0			
	OUT8_COLOR									
	R/W-00h									

Table 34. OUT8_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT8_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.30 OUT9_COLOR (Address = 1Dh) [reset = 00h]

OUT9_COLOR is shown in Figure 45 and described in Table 35.

Return to Table 4.

Figure 45. OUT9_COLOR Register

7	6	5	4	3	2	1	0			
	OUT9_COLOR									
	R/W-00h									

Table 35. OUT9_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT9_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.31 OUT10_COLOR (Address = 1Eh) [reset = 00h]

OUT10_COLOR is shown in Figure 46 and described in Table 36.

Return to Table 4.

STRUMENTS

(AS

	Fiaure 46.	OUT10_COLOR F	Reaister
--	------------	---------------	----------

7	6	5	4	3	2	1	0
OUT10_COLOR							
	 R/W0-0h						

Table 36. OUT10_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT10_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.32 OUT11_COLOR (Address = 1Fh) [reset = 00h]

OUT11_COLOR is shown in Figure 47 and described in Table 37.

Return to Table 4.

Figure 47. OUT11_COLOR Register

7	6	5	4	3	2	1	0
OUT11_COLOR							
			R/W	7-00h			

Table 37. OUT11_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT11_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.33 OUT12_COLOR (Address = 20h) [reset = 00h]

OUT12_COLOR is shown in Figure 48 and described in Table 38.

Return to Table 4.

Figure 48. OUT12_COLOR Register

7	6	5	4	3	2	1	0
OUT12_COLOR							
			R/W	-00h			

Table 38. OUT12_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT12_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.34 OUT13_COLOR (Address = 21h) [reset = 00h]

OUT13_COLOR is shown in Figure 49 and described in Table 39.

Return to Table 4.

Figure 49. OUT13_COLOR Register

7	6	5	4	3	2	1	0	
	OUT13_COLOR							

Table 39. OUT13_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT13_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.35 OUT14_COLOR (Address = 22h) [reset = 00h]

OUT14_COLOR is shown in Figure 50 and described in Table 40.

Return to Table 4.

Figure 50. OUT14_COLOR Register

7	6	5	4	3	2	1	0	
	OUT14_COLOR							
	R/W-00h							

Table 40. OUT14_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT14_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%.
				 FFh = The color mixing percentage is 100%.

8.6.36 OUT15_COLOR (Address = 23h) [reset = 00h]

OUT15_COLOR is shown in Figure 51 and described in Table 41.

Return to Table 4.

Figure 51. OUT15_COLOR Register

7	6	5	4	3	2	1	0	
OUT15_COLOR								
	R/W-00h							

IEXAS INSTRUMENTS

Bit	Field	Туре	Reset	Description
7–0	OUT15_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

Table 41. OUT15_COLOR Register Field Descriptions

8.6.37 OUT16_COLOR (Address = 24h) [reset = 00h]

OUT16_COLOR is shown in Figure 52 and described in Table 42.

Return to Table 4.

Figure 52. OUT16_COLOR Register

7	6	5	4	3	2	1	0
OUT16_COLOR							
			R/W	-00h			

Table 42. OUT16_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT16_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.38 OUT17_COLOR (Address = 25h) [reset = 00h]

OUT17_COLOR is shown in Figure 53 and described in Table 43.

Return to Table 4.

Figure 53. OUT17_COLOR Register

7	6	5	4	3	2	1	0	
			OUT17_	COLOR				
	R/W-00h							

Table 43. OUT17_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT17_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.39 OUT18_COLOR (Address = 26h) [reset = 00h]

OUT18_COLOR is shown in Figure 54 and described in Table 44.

Return to Table 4.

Figure 54. OUT18_COLOR Register

7	6	5	4	3	2	1	0
OUT18_COLOR							
			R/W	-00h			

Table 44. OUT18_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT18_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.40 OUT19_COLOR (Address = 27h) [reset = 00h]

OUT19_COLOR is shown in Figure 55 and described in Table 45.

Return to Table 4.

Figure 55. OUT19_COLOR Register

7	6	5	4	3	2	1	0	
OUT19_COLOR								
	R/W-00h							

Table 45. OUT19_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT19_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.41 OUT20_COLOR (Address = 28h) [reset = 00h]

OUT20_COLOR is shown in Figure 56 and described in Table 46.

Return to Table 4.

Figure 56. OUT20_COLOR Register

7	6	5	4	3	2	1	0	
	OUT20_COLOR							
	R/W-00h							

Table 46. OUT20_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT20_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.42 OUT21_COLOR (Address = 29h) [reset = 00h]

OUT21_COLOR is shown in Figure 57 and described in Table 47.

Return to Table 4.

Figure 57. OUT21_COLOR Register

7	6	5	4	3	2	1	0
	OUT21_COLOR						
			R/W	-00h			

Table 47. OUT21_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT21_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.43 OUT22_COLOR (Address = 2Ah) [reset = 00h]

OUT22_COLOR is shown in Figure 58 and described in Table 48.

Return to Table 4.

Figure 58. OUT22_COLOR Register

7	6	5	4	3	2	1	0
			OUT22_	COLOR			
			R/W	-00h			

Table 48. OUT22_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT22_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.44 OUT23_COLOR (Address = 2Bh) [reset = 00h]

OUT23_COLOR is shown in Figure 59 and described in Table 49. Return to Table 4.

Figure 59. OUT23_COLOR Register

7	6	5	4	3	2	1	0
			OUT23_	COLOR			
	R/W-00h						

Bit	Field	Туре	Reset	Description
7–0	OUT23_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

Table 49. OUT23_COLOR Register Field Descriptions

8.6.45 OUT24_COLOR (Address = 2Ch) [reset = 00h]

OUT24_COLOR is shown in Figure 60 and described in Table 50. Return to Table 4.

Figure 60. OUT24_COLOR Register

7	6	5	4	3	2	1	0	
	OUT24_COLOR							
	R/W-00h							

Table 50. OUT24_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT24_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.46 OUT25_COLOR (Address = 2Dh) [reset = 00h]

OUT25_COLOR is shown in Figure 61 and described in Table 51.

Return to Table 4.

Figure 61. OUT25_COLOR Register

7	6	5	4	3	2	1	0	
	OUT25_COLOR							
	R/W-00h							

Table 51. OUT25_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT25_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.47 OUT26_COLOR (Address = 2Eh) [reset = 00h]

OUT26_COLOR is shown in Figure 62 and described in Table 52.

Return to Table 4.

STRUMENTS

XAS

		Figu	re 62. OUT26	6_COLOR Reg	ister		
7	6	5	4	3	2	1	0
			OUT26_	_COLOR			
			R/W	7-00h			

Table 52. OUT26_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT26_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.48 OUT27_COLOR (Address = 2Fh) [reset = 00h]

OUT27_COLOR is shown in Figure 63 and described in Table 53.

Return to Table 4.

Figure 63. OUT27_COLOR Register

7	6	5	4	3	2	1	0	
	OUT27_COLOR							
			R/W	7-00h				

Table 53. OUT27_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT27_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.49 OUT28_COLOR (Address = 30h) [reset = 00h]

OUT28_COLOR is shown in Figure 64 and described in Table 54.

Return to Table 4.

Figure 64. OUT28_COLOR Register

7	6	5	4	3	2	1	0	
			OUT28_	COLOR				
	R/W-00h							

Table 54. OUT28_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT28_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.50 OUT29_COLOR (Address = 31h) [reset = 00h]

OUT29_COLOR is shown in Figure 65 and described in Table 55.

Return to Table 4.

Figure 65. OUT29_COLOR Register

7	6	5	4	3	2	1	0	
	OUT29_COLOR							
	R/W-00h							

Table 55. OUT29_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT29_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.51 OUT30_COLOR (Address = 32h) [reset = 00h]

OUT30_COLOR is shown in Figure 66 and described in Table 56.

Return to Table 4.

Figure 66. OUT30_COLOR Register

7	6	5	4	3	2	1	0	
	OUT30_COLOR							
	R/W-00h							

Table 56. OUT30_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT30_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%.
				 FFh = The color mixing percentage is 100%.

8.6.52 OUT31_COLOR (Address = 33h) [reset = 00h]

OUT31_COLOR is shown in Figure 67 and described in Table 57.

Return to Table 4.

Figure 67. OUT31_COLOR Register

7	6	5	4	3	2	1	0
	OUT31_COLOR						
	R/W-00h						

Texas Instruments

Bit	Field	Туре	Reset	Description
7–0	OUT31_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

Table 57. OUT31_COLOR Register Field Descriptions

8.6.53 OUT32_COLOR (Address = 34h) [reset = 00h]

OUT32_COLOR is shown in Figure 68 and described in Table 58.

Return to Table 4.

Figure 68. OUT32_COLOR Register

7	6	5	4	3	2	1	0				
			OUT32_	COLOR							
			R/W	-00h	R/W-00h						

Table 58. OUT32_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT32_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.54 OUT33_COLOR (Address = 35h) [reset = 00h]

OUT33_COLOR is shown in Figure 69 and described in Table 59.

Return to Table 4.

Figure 69. OUT33_COLOR Register

7	6	5	4	3	2	1	0	
	OUT33_COLOR							
	R/W-00h							

Table 59. OUT33_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT33_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.55 OUT34_COLOR (Address = 36h) [reset = 00h]

OUT34_COLOR is shown in Figure 70 and described in Table 60.

Return to Table 4.

Figure 70. OUT34_COLOR Register

7	6	5	4	3	2	1	0
			OUT34_	COLOR			
	R/W-00h						

Table 60. OUT34_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT34_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%.
				 FFh = The color mixing percentage is 100%.

8.6.56 OUT35_COLOR (Address = 37h) [reset = 00h]

OUT35_COLOR is shown in Figure 71 and described in Table 61.

Return to Table 4.

Figure 71. OUT35_COLOR Register

7	6	5	4	3	2	1	0	
OUT35_COLOR								
	R/W-00h							

Table 61. OUT35_COLOR Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	OUT35_COLOR	R/W	00h	00h = The color mixing percentage is 0%.
				 80h = The color mixing percentage is 50%. FFh = The color mixing percentage is 100%.

8.6.57 **RESET** (Address = 38h) [reset = 00h]

RESET is shown in Figure 72 and described in Table 62. Return to Table 4.

Figure 72. RESET Register

7	6	5	4	3	2	1	0
			RE	SET			
			W-	00h			

Table 62. RESET Register Field Descriptions

Bit	Field	Туре	Reset	Description
7–0	RESET	W	00h	FFh = Reset all the registers to default value.

TEXAS INSTRUMENTS

www.ti.com

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The LP503x device is a 30- or 36-channel constant-current-sink LED driver. The LP503x device improves the user experience in color mixing and intensity control, for both live effects and coding effort. The optimized performance for RGB LEDs makes it a perfect fit for human-machine interaction applications.

9.2 Typical Application

The LP503x design supports up to four devices in parallel with different configurations on the ADDR0 and ADDR1 pins.

Typical Application (continued)

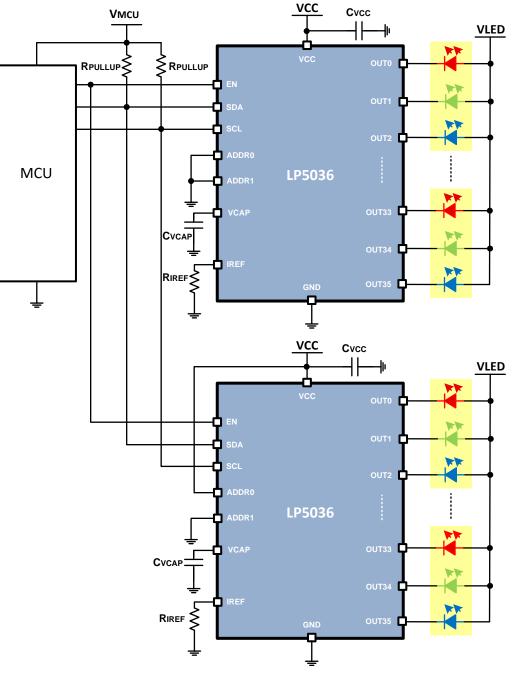


Figure 73. Driving Dual LP5036 Application Example

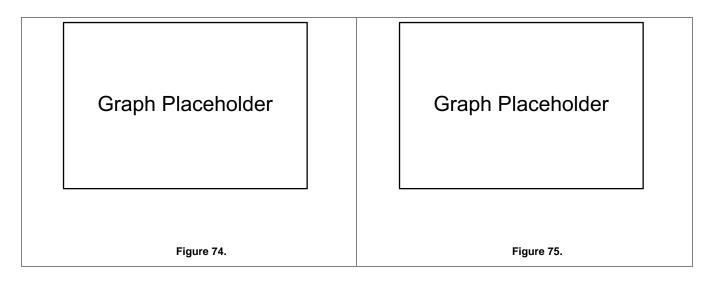
9.2.1 Design Requirements

Set the LED current to 15 mA using the R_{IREF} resistor.

9.2.2 Detailed Design Procedure

The LP503x device scales up the reference current (I_{REF}) set by the external resistor (R_{IREF}) to sink the output current (I_{OUT}) at each output port. The following formula can be used to calculate the target output current I_{MAX_SET} :

Typical Application (continued)


$$R_{IREF} = \frac{K_{IREF} \times V_{IREF}}{I_{(MAX_SET)}} = 105 \times 0.7 \div 0.015 = 4900 \Omega$$

The SCL and SDA lines must each have a pullup resistor placed somewhere on the line (the pullup resistors are normally located on the bus master). In typical applications, values of 1.8 k Ω to 4.7 k Ω are used, depending on the bus capacitance, I/O voltage, and the desired communication speed. Selecting a smaller value increases the pullup speed, but slows the pulldown speed. If they want pull up quickly select the samller one but it will impact the pull down speed.

VCAP is the internal LDO output pin. This pin must be connected through a $1-\mu F$ capacitor to GND. Put the capacitor as close to the device as possible.

TI recommends having a $1-\mu$ F capacitor between VCC and GND to ensure proper operation. Put the capacitor as close to the device as possible.

9.2.3 Application Curves

10 Power Supply Recommendations

The device is designed to operate from a V_{VCC} input-voltage supply range between 2.7 V and 5.5 V. This input supply must be well-regulated and able to withstand maximum input current and maintain stable voltage without voltage drop even in a load-transition condition (start-up or rapid intensity change). The resistance of the input supply rail must be low enough that the input-current transient does not cause a drop below the 2.7-V level in the LP503x V_{VCC} supply voltage.

11 Layout

11.1 Layout Guidelines

To prevent thermal shutdown, the junction temperature, T_J , must be less than $T_{(TSD)}$. If the voltage drop across the output channels is high, the device power dissipation can be large. The LP503x device has very good thermal performance because of the thermal pad design; however, the PCB layout is also very important to ensure that the device has good thermal performance. Good PCB design can optimize heat transfer, which is essential for the long-term reliability of the device.

Use the following guidelines when designing the device layout:

- Put the C_{VCAP}, C_{VCC} and R_{IREF} as close to the device as possible. Also, TI recommends to put the ground plane as shown in Figure 76 and Figure 77.
- Maximize the copper coverage on the PCB to increase the thermal conductivity of the board. The major heat flow path from the package to the ambient is through copper on the PCB. Maximum copper density is extremely important when no heat sinks are attached to the PCB on the other side from the package.
- Add as many thermal vias as possible directly under the package ground pad to maxtimize the thermal conductivity of the board.
- Use either plated-shut or plugged and capped vias for all the thermal vias on both sides of the board to prevent solder voids. To ensure reliability and performance, the solder coverage should be at least 85%.

11.2 Layout Examples

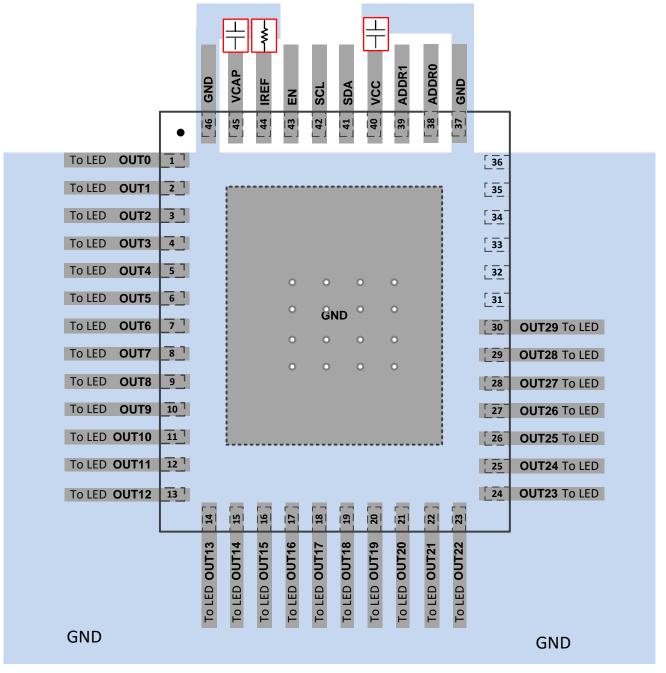


Figure 76. LP5030 Layout Example

Layout Examples (continued)

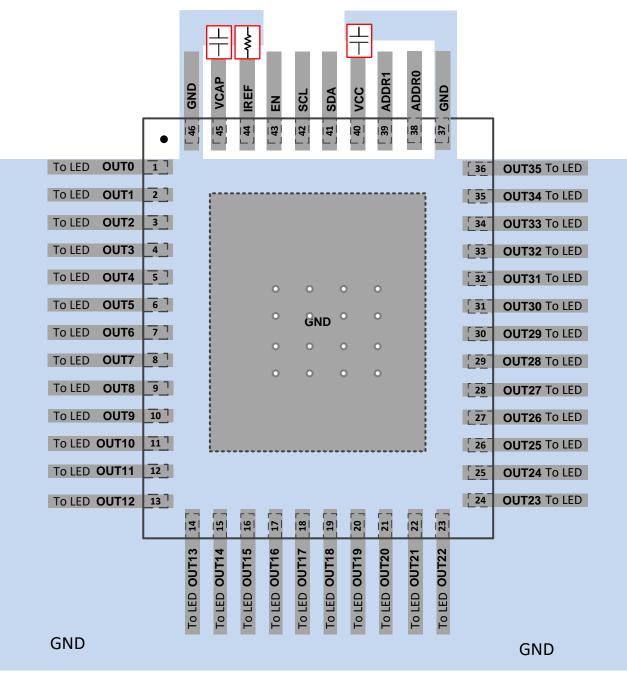


Figure 77. LP5036 Layout Example

12 Device and Documentation Support

12.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to order now.

PARTS	PRODUCT FOLDER	ORDER NOW	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY	
LP5030	Click here	Click here	Click here	Click here	Click here	
LP5036	Click here	Click here	Click here	Click here	Click here	

Table 63. Related Links

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

E2E is a trademark of Texas Instruments.

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the mostcurrent data available for the designated device. This data is subject to change without notice and without revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.

20-Sep-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LP5030RJVR	PREVIEW	VQFN	RJV	46	5000	TBD	Call TI	Call TI	-40 to 125		
LP5036RJVR	PREVIEW	VQFN	RJV	46	5000	TBD	Call TI	Call TI	-40 to 125		
PLP5030RJVR	ACTIVE	VQFN	RJV	46	3000	TBD	Call TI	Call TI	-40 to 125		Samples
PLP5036RJVR	ACTIVE	VQFN	RJV	46	3000	TBD	Call TI	Call TI	-40 to 125		Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

20-Sep-2018

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated